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Metastasis occurs in nearly 1 out of 3 breast cancer (BC) patients and significantly reduces survival rates,
particularly in cases of distant metastases. As most distant metastases develop after diagnosis (i.e.,
recurrence) and remain incurable, there is a critical need for prognostic biomarkers to assess recurrence
risk. Multimodal data analysis has emerged as a promising approach to integrate diverse information,
offering a more comprehensive perspective. This study introduces the Histology HSI-BC (hyperspectral
imaging - breast cancer) Recurrence Database, the first publicly accessible multimodal database
designed to advance BC distant recurrence prediction. The database comprises 47 histopathological
whole-slide images, 677 hyperspectral (HS) images, and clinical and demographic data from 47 BC
patients, of whom 22 (47%) experienced distant recurrence over a 12-year follow-up. Histopathological
slides were digitized using a whole-slide scanner and annotated by expert pathologists, while HS
images were acquired with an HS camera coupled to a bright-field microscope. This database provides
a promising resource for studying BC recurrence prediction and personalized treatment strategies by
integrating the aforementioned multimodal data.

Background & Summary

In 2022, breast cancer (BC) was the most common type of cancer in women, with an incidence of 23.8%, and
the leading cause of cancer-related death among women, accounting for 15.4% of all cancer-related deaths'.
Cancer cells can spread from the primary tumor to other parts of the body, which is known as metastasis and is
the main cause of death in most cancers®*. Metastasis occurs in nearly 1 out of 3 patients diagnosed with BC and
can appear in the axillary lymph nodes (regional metastasis) or in other organs (distant metastasis)*. Overall,
the 5-year survival rate after diagnosis of BC is 91%. However, this rate is higher in patients with tumors located
exclusively in the breast (99%) than in patients with regional metastasis (86%) or with distant metastasis (31%),
where survival decreases dramatically*. Women with distant metastases may have either de novo distant spread,
where distant metastases are already present at the time of diagnosis, or develop distant metastases after an
initial diagnosis and treatment, which is known as recurrence®. While de novo cases account for approximately
25% of metastatic BC diagnoses, the majority result from recurrence®. Whether de novo or recurrent, distant
metastases remain incurable”S.
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Certain classic prognostic factors are associated with the risk of developing distant metastasis, such as age,
tumor diameter, stage, tumor grade, tumor type or lymphovascular invasion (LVI)®. Additionally, studies have
identified other biomarkers with prognostic value in the disease that may be associated with metastasis, includ-
ing genetic alterations, circulating tumor cells and circulating tumor DNA, biomarkers of response to immu-
notherapy and gene expression platforms to predict the risk of recurrence®!!. However, to date there is no
consensus for the implementation of most of these biomarkers in routine clinical practice. Therefore, there
continues to be a growing interest in identifying specific prognostic biomarkers that allow determining the
probability of developing metastasis.

Cancer detection relies heavily on imaging methods like X-ray, ultrasound, and magnetic resonance imag-
ing'?. However, treatment decisions require a conclusive histopathological diagnosis, which is obtained from a
tissue biopsy. BC can be broadly categorized into in situ carcinoma and invasive carcinoma. Among these, ductal
carcinoma in situ (DCIS) represents the most prevalent subtype of in situ carcinoma, while invasive ductal car-
cinoma (IDC) is the most common subtype of invasive carcinoma. Nevertheless, given the heterogeneity of BC,
the accurate identification of these subtypes among other histological subtypes requires extensive expertise and
a deep understanding of breast pathology'?. The rise of digital pathology, which leverages whole-slide images
(WSIs), has revolutionized research and diagnosis in pathology, particularly in cancer, by enabling more efficient
data sharing across institutions and promoting remote collaborations. WSIs are high-resolution digital images of
traditional glass pathology slides, which can be viewed, analyzed, and shared on a computer screen'*'>. The use
of WSIs also paves the way for computational pathology, which started from the use of traditional image analysis
methods to advanced machine learning (ML) and deep learning (DL) algorithms'®'”. Remarkably, these novel
approaches offer the potential to integrate multiple data modalities, extending beyond histopathology image
analysis. This includes linking histopathological images with clinical factors, such as prognosis and genetic
mutations, thereby enhancing BC diagnostics'®-2°.

Beyond conventional methods, other imaging modalities show promising potential for improving the diag-
nosis and prognosis of BC patients. Among these, hyperspectral (HS) imaging (HSI), combines traditional imag-
ing with spectroscopy to capture both spatial and spectral information. Each material interacts uniquely with
emitted radiation, reflecting and absorbing it in a way that creates a distinct radiance vector, often named spec-
tral signature. HSI sensors can capture these spectral signatures, acquiring significantly more data than standard
RGB (Red, Green, Blue) cameras and extending imaging capabilities beyond human vision (e.g., near-infrared
(NIR) HS sensors can capture wavelengths ranging from 900 to 1,700 nm)?'. In recent years, the use of HSI in
medicine has begun to achieve promising results regarding cancer detection by utilizing cutting-edge ML algo-
rithms to process the high amount of HS data**-?%. In the existing literature for medical histological applications,
HSI has been used to identify pancreatic neoplasms with different prognoses®, quantify Ki67 as a prognostic
factor in lymphomas? and study the interactions between tumor cells and immune cells of the tumor microen-
vironment in response to immunotherapy in lung cancer?, obtaining promising results.

Research in this area is still in its early stages, and the number of published studies remains limited.
Regarding WSI and clinical and demographic databases, The Cancer Genome Atlas (TCGA) is one of the main
publicly available sources for hematoxylin and eosin (H&E)-stained WSIs and associated clinical and demo-
graphic data®. The main challenge of this database is the lack of annotations, which makes the subsequent anal-
ysis of these WSIs difficult. The Molecular Taxonomy of Breast Cancer International Consortium (METABRIC)
is another database that provides clinical, demographic, and molecular data of over 2,000 BC cases*. However,
it primarily focuses on genomic and transcriptomic data and does not include WSIs. Several publicly available
databases contain H&E-stained WSIs*’, but most include annotations focused on specific cell types in BC, such
as tumor-infiltrating lymphocytes and inflammatory cells. We have identified one database - Breast Cancer
Semantic Segmentation (BCSS) that provides specific annotations of tissue compartments, distinguishing
between tumor and healthy tissue®!. Regarding medical HS databases only two major sets were identified: in
2022, Zhang et al.** introduced a large-scale database for HS microscopic images of precancerous lesions in
gastric cancer, and in 2024, Ortega et al. released the HistologyHSI-GB dataset®, focused on HS glioblastoma
histology. None of those databases included clinical or demographic data, this being one of the main challenges
in this field. There is a limited availability of comprehensive, high-quality databases, which hinders the broader
application of clinical and demographic data, WSIs and HSI in clinical practice and research. The lack of such
databases makes it difficult to fully explore the potential of HSI together with conventional practices for diag-
nosing and predicting disease outcomes, such as recurrence in BC.

This paper presents a publicly accessible database designed to investigate specific prognostic biomarkers
for predicting the likelihood of BC recurrence due to distant metastasis. The HistologyHSI-BC Recurrence
Database includes clinical and demographic data from BC patients, along with WSIs and HS images obtained
from their primary tumor samples. This database is intended to evaluate the ability to predict recurrence due to
distant metastasis over a 12-year follow-up period. Biopsies from 47 patients diagnosed with BC were extracted,
sliced and stained with H&E, 47 WSIs and 677 microscopic HS images were taken, and their clinical and demo-
graphic data were collected. Among these patients, 22 experienced distant recurrence. A schematic overview of
the study workflow is presented in Fig. 1.

The HistologyHSI-BC Recurrence Database will benefit researchers by providing a comprehensive, mul-
timodal database that integrates WSIs, HS images, and clinical and demographic data from BC patients. This
resource enables the development and refinement of predictive models for BC recurrence due to distant metasta-
sis, starting to fill a significant gap in available databases. Researchers can leverage this data to explore innovative
ML approaches, enhance diagnostic accuracy, and identify novel biomarkers for BC recurrence. Additionally,
the database promotes reproducibility, facilitates collaboration across institutions, and accelerates research in
computational pathology, potentially improving personalized treatment strategies and benefiting broader cancer
research efforts.
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Fig. 1 Schematic overview of the study design or workflow. The patient cohort comprises 47 BC patients, of
which 22 (47%) experienced distant recurrence over a 12-year follow-up period and 25 (53%) did not. All these
patients had a breast tumor biopsy, which was collected, prepared, and stained with H&E. The H&E-stained
slides were digitized to obtain WSIs and annotated to differentiate three tissue compartments: IDC, healthy
tissue and DCIS. Within each annotated area, ROIs were selected, from which HS images were acquired to
generate HS cubes and extract spectral signatures. Together with the clinical and demographic data, all this
information constitutes the HistologyHSI - BC Recurrence Database.

Methods

Patients selection, eligibility criteria and ethics approval. This is a retrospective case-control study
carried out on 47 BC patients diagnosed with IDC, now called invasive breast carcinoma of no special type,
between 2006 and 2015, who met the eligibility criteria for inclusion (Table 1). Cases include 22 patients who
experienced recurrence due to distant metastasis during the 12 years following diagnosis. The remaining 25
patients who did not experience recurrence during the 12 years of follow-up are included as control group.

The study was approved by the Drug Research Ethics Committee of the Institut d’'Investigacié Sanitaria
Pere Virgili (IISPV), Tarragona, Spain, under reference number 134/2022. The samples used in this study were
obtained from Biobank IISPV-Node Tortosa, Tarragona, Spain, following the principles of ethical conduct and
data protection. The Biobank has approved the open publication of the data associated with this work. All par-
ticipants whose samples were stored in the biobank have previously signed an informed consent form, explicitly
authorizing the collection, storage, and future use of their biological materials and associated data for research
purposes. The processing, communication and transfer of personal data of all participants comply with the
provisions of Organic Law 3/2018, of December 5, on the Protection of Personal Data and Guarantee of Digital
Rights and with Regulation (EU) 2016/679 of the European Parliament and of the Council, of April 27, 2016, on
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Inclusion

Exclusion

A diagnosis of IDC

Receipt of neoadjuvant treatment, as it is known to modify the
tumor microenvironment

Representativeness of IDC tissue in surgical biopsy

Recurrence occurring in the breast rather than in distant organs

A clinical history with complete clinical and pathological data

Presence of distant metastases at the time of diagnosis

Patient’s agreement to be included in the study

Failure to meet any of the inclusion criteria

Table 1. Eligibility criteria for patient inclusion.

the protection of natural persons with regard to the processing of personal data and the free circulation of these
data, and repealing Directive 95/46/EC (General Data Protection Regulation). The data generated and collected
during this study are anonymized to ensure the security of the information, safeguarding the confidentiality and
privacy of the patients.

Data Collection
Clinical and demographic data. The data collection process involved extracting information from clinical
records, including demographic and clinical data, which were following Table 2.

Histopathology WSls. Paraffin blocks of primary tumor biopsies with sufficient representative IDC tis-
sue were obtained from the Biobank IISPV-Node Tortosa, Tarragona, Spain. The samples were processed in the
Pathology Department, where 2 um-thick sections were prepared from each paraffin block and stained with H&E
according to the instructions of the manufacturer. The slides were sealed with coverslips using dibutylphthalate
polystyrene xylene (DPX) mounting medium for subsequent digitization and HS microscopic image acquisition.

The H&E-stained slides were digitized with the Pannoramic 250 Flash III WSI scanner (3DHISTECH Ltd.,
Budapest, Hungary) at 20 x magnification (0.2433 pm/pixel) using MRXS image format. WSIs were visualized
using QuPath* (available at: https://qupath.github.io/) for technical validation and annotation, and anonymized
using the SlideMaster software (3DHISTECH Ltd., Budapest, Hungary). The annotation process of each WSI
was manually performed by pathologists using diverse colors to distinguish between IDC, healthy tissue, and
DCIS. The annotations were made with the following color scheme: IDC was outlined in blue, healthy tissue in
green, and DCIS in red (Fig. 2a).

Moreover, within each of these three tissue compartment types, different regions of interest (ROIs), sur-
rounded by yellow line, were identified and annotated to subsequently acquire the HS image using the HS
microscopic system (Fig. 2a). These ROIs were selected to ensure the inclusion of representative areas of each
class (IDC, healthy and DCIS), capturing relevant spectral variability for further analysis.

HS images. The HS images were captured using a HS microscopic system (Fig. 2b). The system features the
Hyperspec® VNIR (Visible and Near Infrared) A-Series camera (HeadWall Photonics, Fitchburg, MA, USA),
a pushbroom HS camera that captures data by scanning the sample spatially. The camera is equipped with a
charge-coupled device (CCD) sensor that covers a spectral range of 400-1,000 nm, capturing 826 spectral bands
across 1,004 spatial pixels per line. It offers high spectral resolution with a slit image full width at half maxi-
mum (FWHM) of 2.5 nm and a pixel size of 7.4 pm. Data are acquired with a 12-bit ADC (Analog-to-digital
Converter), and each HS line has a size of 1,004 x 826 pixels and requires 1.6 MB per line on disk for storage. The
microscope used is the OLYMPUS BX-53 (Olympus, Tokyo, Japan), with LMPLN-IR (5 x, 10 x ) and LCPLN-IR
(20 x, 50 x ) objective lenses optimized for infrared imaging. The system uses a 100 W TH4 halogen lamp
(Olympus, Tokyo, Japan) as the light source, covering a wavelength range from 400 to 1,800 nm and supporting
both transmittance and reflectance light paths. To acquire full HS images, the pushbroom camera requires spatial
scanning, which is facilitated by a SCAN 130 x 85 scanning stage (Marzhéauser, Wetzlar, Germany). The stage
ensures high precision (43 pm accuracy) as it moves the sample, keeping it aligned with the objective and light
path. Furthermore, an RGB camera, the acA5472-17uc (Basler AG, Ahrensburg, Germany), provides real-time
visualization of the sample to navigate it without the need of using the microscope binoculars. It is a 20 MP com-
pact camera with a Sony IMX183 CMOS sensor (Tokyo, Japan), 5,496 x 3,672 resolution, and 17 fps. It features
USB 3.0, a C-mount, and supports hardware/software triggers.

Calibration of the HS images is necessary to ensure the data accurately represents the sample’s spectral signa-
tures. The HS microscope captures spectral signatures for each pixel, but factors like the sensor’s response, light
transmission, and the light source can affect accuracy. The calibration process involves normalizing the pixel
values of the HS image by adjusting them based on a white reference (WR) and a dark reference (DR). WR is
obtained by focusing on an empty area of the slide at the same working distance. This ensures no sample material
is present, allowing the frame to record the maximum signal the sensor can measure for each pixel and wave-
length under the given conditions (e.g., exposure time, light intensity, and slide properties). Conversely, the DR
is captured by completely blocking light transmission to the HS camera. This frame captures the minimum sig-
nal levels detectable by the sensor for each pixel and band, as well as dark current information from the CCD.
Ideally, DR values approach zero; however, higher values may occur due to intrinsic sensor noise. To enhance the
reliability of the calibration process, 100 frames are collected for both the WR and DR, ensuring that averaging
reduces potential errors. Finally, the calibration of the HS image is achieved using Eq. (1), which relates the cal-
ibrated HS image (r;) to the raw HS image (Raw;).
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Attribute Definition Format
Sex Patients’ gender 1: Female
Race Patients’ race 1: White
Demographic Data
Ethnicity Patients’ ethnicity 1: Hispanic
Menopausal status Menopausal status of the patient 0: Premenopause and 1: Postmenopause
X . Dx surgery Type of surgery 0: Mastectomy and 1: Lumpectomy
Diagnosis
Dx age Difference between diagnosis and birth dates Years
Tumor diameter Maximum diameter of the irregular shaped tumor Millimeters
Tumor histologic grade Degree of differentiation of tumor cells, reflecting how different 1: Grade 1, 2: Grade 2 and 3: Grade 3
they are from normal breast cells
Tumor Data
LVI Presence of tumor cells within lymphatic or blood vessels 0: Negative and 1: Positive
PNI Ability of cancer cells to proliferate around peripheral nerves and, 0: Negative and 1: Positive
eventually, invade them
T (tumor) Tumor size assessed by pathological evaluation 1: T1,2: T2,3: T3,and 4: T4
Tamor Stage N (node) ;[‘1;1; E:zgir has spread to the LNs assessed by pathological 0:NO, 1: N1, 2: N2 and 3: N3

M (metastasis)

Status of breast cancer spreading to a different part of the body

0: MO

ER Status of ER 0: Negative and 1: Positive
PR Status of PR 0: Negative and 1: Positive
HER2 Status of HER2 0: Negative and 1: Positive
Tumor Molecular Markers Ind tifying KI67 fon t how fast
K167 naex quantiiying %167 expression to measure how fast cancer 0: K167 index < 20% and 1: K167 index > 20%
cells are dividing in a tumor
. . . . 0: Luminal A, 1: Luminal B HER2-, 2: Luminal B
Molecular subtype Classification according to IHC status of ER, PR, HER2 and Ki67 HER2+, 3: HER2+, and 4: Triple negative
LN status Status of the spreading of tumor cells to the SLNs and non-SLNs I(z/:[Negatlve, 1: ITC, 2: Micrometastasis and 3:
acrometastasis
LN ITC number LNs with ITC Natural number
LN MICRO number LNs with micrometastasis Natural number
LN Status LN MACRO number LNs with macrometastasis Natural number
LN number LNs removed during SLN biopsy and/or LN dissection Natural number
SLN number LNs removed during SLN biopsy Natural number
SLN status Presence (or absence) of tumor cells in the SLNs i/:INegatlve, L: ITC’ 2: Micrometastasis and 3:
acrometastasis
Tx hormonal Patient received (or not) hormonal treatment 0: Not received and 1: Received
TxCT Patient received (or not) adjuvant CT after the surgery 0: Not received and 1: Received
Tumor Treatment
Tx trastuzumab Patient received (or not) trastuzumab 0: Not received and 1: Received
Tx RT Patient received (or not) RT 0: Not received and 1: Received
0: No evidence of local or distant metastases,
Status of cancer spreading from the primary tumor to other organs 1: Metastasized on neatby tissues or LNs, 2:
Metastasis type durine the followp-)u erigo d P Y 8 Metastasized in distant organs from primary
& PP site and 3: Both local and distant metastases are
present
Time a patient survives without any signs or symptoms of cancer
DFS after finishing primary treatment. Difference between the relapse Months
Follow-up and diagnosis dates. If the patient did not relapse, the date of last
follow-up is used instead.
Vital status 0: Alive and 1: Deceased
Death cause 0: Other causes / Still alive and 1: Cancer

Time from the date of cancer diagnosis that patients remain alive.
oS Difference between the death and diagnosis dates. If the patient
did not die, the date of last follow-up is used instead.

Months

Table 2. Description of the study variables. CT, chemotherapy; DFS, disease-free survival; Dx, diagnosis; ER,
estrogen receptors; HER2, human epidermal growth factor receptor 2; IHC, immunohistochemistry; ITC,
isolated tumor cells; K167, proliferation index; LN, lymph node; LVI, lymphovascular invasion; MACRO,
macrometastasis; MICRO, micrometastasis; OS, overall survival; PN, perineural invasion; PR, progesterone
receptors; RT, radiotherapy; SLN, sentinel lymph node; Tx, treatment.

_ Raw, — DR
WR — DR (1)
In-house software was developed to serve multiple functions in the HSI acquisition process. It displays the
RGB image to facilitate sample navigation under the microscope and ensures synchronization between the HS

camera and the scanning platform by aligning their frame rate and platform movement. After capturing the
HS image, the software removes the extreme bands from the raw HS image (reducing the spectral range from
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400-1,000 nm to 400.5-938 nm), as these bands contain significant noise, and then saves the raw HS image. The
calibrated HS image is then generated, using Eq. (1), and saved on memory as five-digit 16-bit unsigned integers
(uint16), where the most significant digit represents the units, and the remaining digits correspond to the dec-
imal places of the transmittance values. Therefore, to obtain true transmittance values, the calibrated HS image
must be divided by 10*. Additionally, the software creates a synthetic RGB image, following the methodology
explained by Ortega et al.*%, to facilitate the visualization of the spatial characteristics of the HS image.

Prior to any HS image capture, magnification is selected, in this case the 10x. WR and DR reference images
are collected. Then, to acquire the HS image, the associated WSI is examined in QuPath™ to identify an ROI
within a specific class, such as IDC (blue), healthy (green) or DCIS (red) tissue. The identified ROI is searched
for in the HS microscopic system using the RGB camera and marked down on the histological image using a
yellow rectangle (Fig. 2c). The ROI is then captured using the HS microscope, generating the raw HS image,
the calibrated HS image, and the synthetic RGB image (Fig. 2d). The RGB image of the ROI is also captured
(Fig. 2e) for future analysis. All data corresponding to one of these captures are saved using an identifier with its
corresponding metadata, including the patient identifier, classification, and region (e.g., HSI_VNIR_15_IDC_
x10_CO01; see Data records section for more details).

Data Records

The HistologyHSI-BC Recurrence Database®® has been deposited at The Cancer Imaging Archive (TCIA) repos-
itory” to make it publicly available, organized into a multilayer folder arrangement. The database is divided into
three main components: clinical and demographic data, histological WSI and HS images (see Fig. 3a). The clin-
ical and demographic data are stored at the 00_01_Clinical_Demographic_Data file. This XLSX file documents
patients’ demographic status, breast tumor characteristics, treatment received, and their follow-up outcomes
(detailed description on Table 2).

Furthermore, the histological data are structured in 3 folders. Firstly, 01_01_Histological_Images folder
contains the WSI for each patient, stored as MRXS files. Each WSI requires a corresponding metadata folder
containing DAT and INTI files for proper rendering. Moreover, 01_02_Tissue_Annotations folder includes WSI
histological annotations that classify tissue types, with boundaries of the regions outlined in blue (IDC), green
(healthy), and red (DCIS), as shown in Fig. 2a. The third folder, 01_03_HSI_ROI_Annotations contains the ROI
for each HS image, with the boundaries of the region outlined in yellow (Fig. 2a). Both histological WSI and HS
image ROI annotation files are provided in GeoJSON format. A summary of the areas of annotations per patient
and tissue type is shown in Table 3. Lastly, 02_01_HSI_Images folder contains the HS images of the histological
slides, stored in ENVI format®. Each capture includes the raw HS image, WR and DR calibration files, and the
calibrated HS image following the procedure described in Eq. (1). As the ENVI standard states, the HS image
is saved as a flat-binary raster DAT (data) file with an accompanying HDR (header) file containing essential
metadata to interpret it. Moreover, within each capture folder a synthetic RGB image and a view of the ROI
captured by the RGB camera are stored. The HS image data are stored in folders named according to the regular
expression HSI_VNIR_{P}_{TT}_x10_C{CN}, where {P} represents the patient ID, {TT} indicates the tissue type
(IDC, healthy, or DCIS), and {CN} is the capture number (Fig. 3b).

Technical Validation

Clinical and demographic data statistic analysis. A preliminary statistical analysis was conducted to
identify differences in the variables between patients with and without recurrence, as shown in Table 4. Statistical
tests used for comparisons included the absolute frequency (percentage) for the Chi-square test or Fisher’s exact
test, and the median (interquartile range) for the Mann-Whitney U test. As expected, certain classic clinical and
pathological variables were found to be associated with the risk of developing metastasis in the present cohort®,
including age at diagnosis, tumor diameter, and LVI.

Analysis of lymph nodes status revealed a significantly higher percentage of micrometastasis and macrome-
tastasis in patients with recurrence compared to those without recurrence. This association remained significant
when considering the number of affected lymph nodes. A similar trend was observed in sentinel lymph nodes
status, where micrometastasis and macrometastasis were more prevalent in the recurrence group. However, no
significant differences were found in lymph nodes containing isolated tumor cells, classified as negative lymph
nodes®. These findings align with established knowledge that lymph node metastasis is associated with a higher
risk of recurrence in BC patients during follow-up>*.

Regarding patient follow-up, we confirmed that all patients without recurrence show no evidence of local
or distant metastases, whereas patients with recurrence do, with most of them having metastases only in dis-
tant organs and a smaller percentage presenting with both local and distant metastases. Among patients with
recurrence, 90.9% died, with cancer being the cause of death in 77.3% of cases. In contrast, among the patients
without recurrence who died, none died from cancer. As expected, the median disease-free survival (DES) was
significantly shorter in the recurrence group compared to the non-recurrence group, as was overall survival
(0S).

Histopathology WSIs and annotation validation. Pathologists qualitatively verified the quality of his-
topathological slides after the sectioning, processing, and staining phases. They confirmed the absence of artifacts
in the ROIs of the WSIs, ensuring that these were not introduced during the tissue preparation or digitization
phases. Pathologists did not detect the presence of folds, broken tissues, tears, bubbles, scalpel marks, or bad
staining on the ROIs due to the tissue preparation phase. Furthermore, they verified the quality of the digitized
histopathological slides making sure there were no issues on the WSIs due to the scanning phase. They confirmed
the absence of scanning artifacts like focus issues or white reference problems. The annotations on the WSIs (IDC,

SCIENTIFIC DATA|  (2025) 12:1886 | https://doi.org/10.1038/s41597-025-06157-4 6


https://doi.org/10.1038/s41597-025-06157-4

www.nature.com/scientificdata/

Fig. 2 Elements and outputs to capture an HS image. (a) Annotated WSI (IDC outlined in blue, healthy tissue
in green, and DCIS in red) captured with the WSI scanner. (b) HS microscopic system used to acquire an HS
image and its corresponding high spatial resolution RGB image of a selected ROI. (¢) Zoom-in of one of the
selected ROIs outlined by yellow rectangles in a). (d) Synthetic RGB image generated from the captured HS
image. (e) High spatial resolution RGB image captured using the 20 MP RGB camera of the HS microscopic
system.

healthy, and DCIS) were initially made by one pathologist, with the annotation process then subjected to valida-
tion by a second pathologist through a pairwise review. This validation phase played a crucial role in minimizing
the inter-observability issue, ensuring consistency and reliability in the annotations. An example of the validated
annotations is shown in Fig. 4.

HSI validation. A technical validation was performed to ensure the quality of the HistologyHSI-BC
Recurrence Database. The HS microscope employed in this study has been thoroughly characterized in previous
works*!, confirming its strong performance for spectral resolution-intensive applications. The system demon-
strates a dynamic range of 65.3 + 0.1 dB in transmittance mode, with a constant dark current of 20 digital num-
bers, which contributes to a reliable HS image capture. It is capable of capturing 826 spectral bands, providing
detailed spectral information and accurately reflecting the spectral properties of the materials under analysis.
This is evidenced by a spectral correlation measure of 0.88 £ 0.01 when capturing the WCT-2065 transmittance
wavelength calibration standard (Avian Technologies, New London, USA) with a known spectral signature in
transmittance mode. The system offers a spatial resolution of 0.739 £ 0.001 um/pixel, along with a modulation
transfer function (MTF) of 370 % 10 line pairs/mm, ensuring sufficient detail for microscopic imaging. Spatial
scanning accuracy is indicated by an eccentricity of 0.04 £ 0.04, and spatial repeatability is shown to have a rela-
tive difference of 14 £ 8% across consecutive captures. All values were measured at 10 x magnification, the same
magnification used for the HS image capturing process in this work.

The characterization parameters obtained from the HS microscopic system demonstrate its capability to pro-
vide reliable and accurate HS data. The HS images captured from the 47 patients studied underwent a calibra-
tion. Afterwards, the database was evaluated to ensure the quality of the captured data. All HS images from each
patient and tissue class (IDC, healthy and DCIS) were averaged for visualization purposes. Figure 5 groups the
spectral signatures of patients with and without recurrence after 12 years. Interestingly, in the biopsies, patients
without recurrence showed a greater similarity between healthy and DCIS tissues, while these tissue types were
more distinctly separated in patients with recurrence. This finding raises the possibility that the closer resem-
blance of DCIS to healthy tissue could serve as an indicator of non-recurrence.
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Fig. 3 Graphical representation of (a) the HistologyHSI-BC Recurrence Database structure and (b) the
contents of each HS image capture.

Usage Notes

Visualizing histopathology WSIs.  The authors recommend downloading and installing the QuPath soft-
ware®® to visualize the WSIs (MRXS format) and their related annotations (GeoJSON format) (Fig. 2a). Further
image analysis can be performed using Python scripts (see sections Recommended histopathology WSI pro-
cessing and Code availability). There are two ways to open a WSI in QuPath: drag and drop the MRXS file into
QuPath or go on “File/Open” and select and open the MRXS file. There is also a tab on the left side of QuPath’s
user interface called “Image”, in which it is possible to visualize the metadata of the histopathological image, such
as width, height, magnification, and resolution. After opening the WSI on QuPath, the two available GeoJSON
files containing annotations on the WSI should be imported. One includes the annotations related to the tissue
compartments (IDC in red, healthy in green, and DCIS in blue). In contrast, the other defines the ROIs used for
capturing the HS images, represented as yellow rectangles. These two files can be opened by dragging and drop-
ping them into QuPath or clicking “File/Import objects from file” and selecting the GeoJSON files. The data from
the GeoJSON files is visible by clicking on the tab “Annotations”. If the annotation classes are not shown after
clicking the “Annotations” tab, click on the button with the three vertical dots on the bottom right of the tab panel,
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Tissue Annotations Area [mm?] HS image ROI Annotations [Number of captures]
PatientID | IDC Healthy DCIS IDC Healthy DCIS Recurrence Label
15 40.94 292 64.24 10 0 0 0
19 94.89 24.00 0.00 10 5 0 1
20 169.27 58.36 0.28 10 5 0 1
25 135.97 139.29 17.62 10 5 5 0
38 210.59 7.71 0.23 10 5 0 1
40 72.19 20.77 0.00 10 5 0 1
43 57.46 22.70 0.00 10 5 0 0
45 71.77 80.06 6.70 10 5 5 0
47 10.40 137.41 0.00 10 5 0 0
51 163.12 2.79 2.34 10 5 0 0
52 96.22 3.50 0.00 10 3 0 0
57 23.26 31.54 0.00 10 5 0 0
62 4.40 66.22 0.00 8 5 0 0
65 104.57 15.22 0.00 10 5 0 0
68 2141 75.70 0.00 10 5 0 0
70 55.12 45.12 0.00 10 5 0 0
80 4.84 37.06 0.00 7 5 0 0
82 109.32 11.99 0.31 10 5 0 0
84 88.06 13.20 7.50 10 5 0 1
85 119.25 521 20.59 10 5 5 0
90 179.57 29.70 0.00 10 5 0 0
100 68.16 3.21 0.06 9 4 0 1
107 8.43 192.86 7.70 10 5 5 0
112 14.84 1.68 0.00 10 0 0 0
124 26.84 0.36 0.00 10 0 0 0
136 190.00 25.98 28.52 9 4 5 0
138 32.58 90.49 11.91 10 5 0 0
139 43.23 72.05 0.00 10 5 0 0
141 168.53 7.96 527 10 5 0 1
146 24.16 3.47 0.32 10 0 0 0
151 3.98 3.78 1.10 4 0 0 0
152 82.41 42.77 19.22 10 5 5 1
153 7.06 77.57 0.88 8 5 0 0
154 51.74 0.00 0.00 10 0 0 1
162 67.66 16.19 1.72 10 5 0 1
189 247.15 0.02 0.00 10 0 0 1
197 212.83 57.60 4.90 10 5 5 1
205 321.29 35.69 0.14 10 5 0 1
211 161.00 0.10 0.09 10 0 0 1
213 451.91 7.64 0.00 10 5 0 1
229 281.13 3.09 2.02 10 3 0 1
238 149.90 0.00 0.00 9 0 0 1
255 164.85 35.81 0.50 10 5 0 1
259 92.43 42.47 2.35 10 5 0 1
269 59.97 6.65 0.00 10 5 0 1
270 30.11 111.68 0.00 10 5 0 1
304 155.02 24.54 0.00 10 5 0 1

Table 3. Summary of histological area coverage and capture counts by tissue type per image.

then select “Populate from existing objects/All classes (including sub-classes)” and the class types along with the
number of annotations for each will appear.

Recommended histopathology WSI processing. This section provides guidelines for working with
WSIs (MRXS format), for which the use of Python scripts is recommended (see the Code availability section for
more details). Due to their high resolution, efficient processing techniques are necessary to optimize performance
and memory usage. Processing high-resolution images can be time-consuming and memory intensive. The
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Attribute Format Recurrence | Non-Recurrence | p
Sex 1: Female 22 (100.0) 25 (100.0) —
Race 1: White 22(100.0) | 25(100.0) —
Demographic Data Ethnicity 1: Hispanic 22(100.0) | 25(100.0) —
0: Premenopause 3(13.6) 3(12.0) «
Menopausal status 1: Postmenopause 19 (86.4) 22 (88.0) 1.000
0: Mastectomy 7 (31.8) 2(8.0) «
Diagnosis Dx surgery 1: Lumpectomy 15(68.2) | 23(92.0) 0.063
Dx age Years 73.0 [22.0] | 57.0[14.0] 0.017*
Tumor diameter Millimeters 26.5[13.8] 15.0 [13.0] <0.001*
1: Grade 1 1(4.5) 4(16.0)
Tumor histologic grade 2: Grade 2 11 (50.0) 14 (56.0) 0.285%
3: Grade 3 10 (45.5) 7 (28.0)
Tumor Data 0: Negati 8(36.4) 18 (72.0)
: Negative X X w
1 1: Positive 14(63.6) | 7(28.0) 0.031
0: Negative 15(68.2) | 21(84.0) N
PNI 1: Positive 7(31.8) 4(16.0) 0.351
1: T1 5(22.7) 17 (68.0)
2: T2 14 (63.6) 8(32.0) *
T (tumor) 313 2(9.1) 0(0.0) 0.012
4:T4 1(4.5) 0(0.0)
Tumor Stage 0: NO 8(36.4) 25(100.0)
1: N1 7(31.8) 0(0.0) %
N (node) 2N2 5(22.7) 0(0.0) <0.001
3:N3 2(9.1) 0(0.0)
M (metastasis) 0: MO 22 (100.0) 25(100.0) —
0: Negative 4(18.2) 5(20.0) «
ER 1: Positive 18(81.8) | 20 (80.0) 1.000
0: Negative 6(27.3) 9(36.0) «
PR 1: Positive 16(727) | 16 (64.0) 0.744
0: Negative 15 (68.2) 22 (88.0) «
HER2 1: Positive 7(31.8) 3(12.0) 0.154
Tumor Molecular Markers Ki67 0: KI67 index < 20% 4(18.2) 10 (40.0) 0189
1: KI67 index > 20% 18 (81.8) 15 (60.0) :
0: Luminal A 4(18.2) 6(24.0)
1: Luminal BHER2— 10 (45.5) 13 (52.0)
Molecular subtype 2: Luminal B HER2+ 4(18.2) 2(8.0) 0.512%*
3:HER2+ 3(13.6) 1(4.0)
4: Triple negative 1(4.5) 3(12.0)
0: Negative 6(27.3) 22 (88.0)
1 ITC 2(9.1) 3(12.0) .
LN status 2: Micrometastasis 3(13.6) 0(0.0) <0.001
3: Macrometastasis 11 (50.0) 0(0.0)
LN ITC number Number of LNs with ITC 0.0 [0.0] 0.0 [0.0] 0.720¢
LN MICRO number Number of LNs with micrometastasis 0.0 [0.0] 0.0 [0.0] 0.027%
; " B
LN Status LN MACRO number Number of LNs with macrometastasis 0.5[7.0] 0.0 [0.0] <0.001
LN number ”(li"ptal n}lmber of LNs removed during SLN biopsy and/or LN 13.0[15.0] | 2.0 [2.0] 0.001*
issection
SLN number Number of LNs removed during SLN biopsy 0.5[2.0] 2.0 [2.0] <0.001*
0: Negative 4(36.4) 22 (88.0)
1:ITC 2(18.2) 3(12.0) "
SLN status 2: Micrometastasis 2(18.2) 0(0.0) 0.002
3: Macrometastasis 3(27.3) 0(0.0)
0: Not received 5(22.7) 4(16.0) «
Txhormonal 1: Received 17(77.3) | 21(84.0) 0.715
0: Not received 11 (50.0) 14 (56.0) «
TxCT 1: Received 11(500) | 11(44.0) 0.906
Tumor Treatment 0: Not ived 19 (86.4) 23(92.0)
: Not receive: § | *
Tx trastuzumab 1: Received 3(13.6) 2(8.0) 0.654
0: Not received 3(13.6) 3(12.0) «
TxRT 1: Received 19(86.4) | 22(88.0) 1.000
0: No evidence of local or distant metastases 0(0.0) 25(100.0)
. 1: Metastasized on nearby tissues or LNs 0(0.0) 0(0.0) %
Metastasis type 2: Metastasized in distant organs from primary site 20(90.9) 0(0.0) <0.001
3: Both local and distant metastases are present 2(9.1) 0(0.0)
DFS Months 39.0[48.0] | 150.0 [28.0] <0.001*
Follow-up -
. 0: Alive 2(9.1) 21(84.0) *
Vital status 1: Deceased 20(909) | 4(16.0) <0.001
0: Other causes / Still alive 5(22.7) 25 (100.0) *
Death cause 1: Cancer 17(77.3) | 0(0.0) <0.001
0s Months 66.5[85.0] | 150.0 [28.0] <0.001*
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Table 4. Differences in the clinical and demographic variables in recurrence vs. non-recurrence groups. Data
are expressed as absolute frequency (percentage) for qualitative variables, compared using the Chi-square

test or Fisher’s exact text*, and as median [interquartile range] for quantitative variables, analyzed using the
Mann-Whitney U test*. CT, chemotherapy; DFS, disease-free survival; Dx, diagnosis; ER, estrogen receptors;
HER?2, human epidermal growth factor receptor 2; ITC, isolated tumor cells; K167, proliferation index; LN,
lymph node; LVI, lymphovascular invasion; MACRO, macrometastasis; MICRO, micrometastasis; OS, overall
survival; PNI, perineural invasion; PR, progesterone receptors; RT, radiotherapy; SLN, sentinel lymph node; Tx,
treatment.

g, %
LS. G

(@]

highest available resolution of the selected slide image is approximately 85,000 x 202,000 pixels, making it signif-
icantly large. To optimize performance, a lower resolution (approximately 670 x 1,600) level should be selected
for visualization. It is also important to downscale the annotations to match the selected lower resolution level.

Recommended HSI processing.  After HS data capture, the calibration of HS images is a mandatory step;
however, additional processing may be performed depending on the specific application of the data.

Given the strong correlation between adjacent spectral bands, spectral dimensionality reduction can be ben-
eficial in reducing intrinsic Gaussian noise and computational costs. This can be accomplished by averaging
adjacent spectral bands to create a spectrally reduced HS image. For example, the data could be reduced from
the original 826 bands to 275 using a spectral window that includes three neighboring bands.

» Normalization is also recommended when partial absorbance is less critical, but the specific absorption wave-
lengths are significant. This normalization can be performed to scale the data between 0 and 1 or to have a
mean of 0 and a standard deviation of 1.

« For HS analysis of the samples, it is advised to remove the sample background by identifying areas with no
absorbance, typically represented by the white background.

o The classification of the data can be based on recurrence status and/or tissue type (IDC, healthy, or DCIS).
When using ML or DL, it is crucial to ensure that data from the same patient do not appear simultaneously in
the training, testing, or validation sets.

All these processing steps can be implemented using Python (see the Code availability section for further
details).

How to combine the different databases (clinical and demographic, WSIs, and HSI).  Integrating
the diverse databases within the Histology HSI-BC Recurrence Database can enhance the prediction of distant
recurrence in BC by leveraging complementary information from multiple modalities. Histopathological WSIs
provide morphological insights assessed by pathologists, HS images capture biochemical variations that may
indicate early tumor progression, and clinical and demographic data offer critical patient-specific factors. By inte-
grating these databases, researchers can develop more robust predictive models that go beyond traditional his-
tological or clinical assessments, improving risk stratification and supporting personalized treatment decisions.

Researchers can employ various data fusion strategies to achieve this integration. Early fusion involves com-
bining raw or preprocessed features from each modality before model training, allowing the model to learn
directly from the integrated data*?. Intermediate fusion entails extracting high-level features from each database
separately and then merging them into a joint representation, capturing modality-specific patterns prior to inte-
gration®’. Late fusion consists of training independent models for each modality and subsequently combining
their outputs to improve overall prediction accuracy'®. Implementing these fusion techniques requires meticu-
lous preprocessing to ensure compatibility and maximize the value of each database. By effectively integrating
these multimodal databases, researchers can uncover subtle patterns associated with BC recurrence, advancing
precision oncology and personalized patient care.

Data availability
The HistologyHSI-BC Recurrence Database is publicly available on the TCIA repository at https://doi.
org/10.7937/6KPY-YT49.
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Fig. 5 Mean and standard deviation HS spectral signatures for different tissues (IDC, healthy and DCIS) for
patients (a) without and (b) with recurrence.

Code availability

The Python scripts developed for this study, along with the required Python toolboxes and libraries, are
available in the publicly accessible repository at https://github.com/HIRIS-Lab/HistologyHSI-BC-Recurrence.
The repository includes a main script providing a basic example of how to load and perform preliminary
preprocessing of hyperspectral data in ENVI format using Python, for which the spectral library is required.
In addition, the repository contains a tutorial demonstrating how to manipulate WSI in MRXS format and
annotation in GeoJSON format in Python. The script overlays tissue compartments (IDC, healthy, and DCIS)
onto slide images using their corresponding colors: blue, green, and red. Working with WSIs in Python requires
the installation of the OpenSlide library. In addition, the JSON library is used for loading annotations, and the PIL
library is employed to prepare and save slide images.
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