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Metastasis occurs in nearly 1 out of 3 breast cancer (BC) patients and significantly reduces survival rates, 
particularly in cases of distant metastases. As most distant metastases develop after diagnosis (i.e., 
recurrence) and remain incurable, there is a critical need for prognostic biomarkers to assess recurrence 
risk. Multimodal data analysis has emerged as a promising approach to integrate diverse information, 
offering a more comprehensive perspective. This study introduces the Histology HSI-BC (hyperspectral 
imaging - breast cancer) Recurrence Database, the first publicly accessible multimodal database 
designed to advance BC distant recurrence prediction. The database comprises 47 histopathological 
whole-slide images, 677 hyperspectral (HS) images, and clinical and demographic data from 47 BC 
patients, of whom 22 (47%) experienced distant recurrence over a 12-year follow-up. Histopathological 
slides were digitized using a whole-slide scanner and annotated by expert pathologists, while HS 
images were acquired with an HS camera coupled to a bright-field microscope. This database provides 
a promising resource for studying BC recurrence prediction and personalized treatment strategies by 
integrating the aforementioned multimodal data.

Background & Summary
In 2022, breast cancer (BC) was the most common type of cancer in women, with an incidence of 23.8%, and 
the leading cause of cancer-related death among women, accounting for 15.4% of all cancer-related deaths1. 
Cancer cells can spread from the primary tumor to other parts of the body, which is known as metastasis and is 
the main cause of death in most cancers2,3. Metastasis occurs in nearly 1 out of 3 patients diagnosed with BC and 
can appear in the axillary lymph nodes (regional metastasis) or in other organs (distant metastasis)4. Overall, 
the 5-year survival rate after diagnosis of BC is 91%. However, this rate is higher in patients with tumors located 
exclusively in the breast (99%) than in patients with regional metastasis (86%) or with distant metastasis (31%), 
where survival decreases dramatically4. Women with distant metastases may have either de novo distant spread, 
where distant metastases are already present at the time of diagnosis, or develop distant metastases after an 
initial diagnosis and treatment, which is known as recurrence5. While de novo cases account for approximately 
25% of metastatic BC diagnoses, the majority result from recurrence6. Whether de novo or recurrent, distant 
metastases remain incurable7,8.
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Certain classic prognostic factors are associated with the risk of developing distant metastasis, such as age, 
tumor diameter, stage, tumor grade, tumor type or lymphovascular invasion (LVI)8. Additionally, studies have 
identified other biomarkers with prognostic value in the disease that may be associated with metastasis, includ-
ing genetic alterations, circulating tumor cells and circulating tumor DNA, biomarkers of response to immu-
notherapy and gene expression platforms to predict the risk of recurrence9–11. However, to date there is no 
consensus for the implementation of most of these biomarkers in routine clinical practice. Therefore, there 
continues to be a growing interest in identifying specific prognostic biomarkers that allow determining the 
probability of developing metastasis.

Cancer detection relies heavily on imaging methods like X-ray, ultrasound, and magnetic resonance imag-
ing12. However, treatment decisions require a conclusive histopathological diagnosis, which is obtained from a 
tissue biopsy. BC can be broadly categorized into in situ carcinoma and invasive carcinoma. Among these, ductal 
carcinoma in situ (DCIS) represents the most prevalent subtype of in situ carcinoma, while invasive ductal car-
cinoma (IDC) is the most common subtype of invasive carcinoma. Nevertheless, given the heterogeneity of BC, 
the accurate identification of these subtypes among other histological subtypes requires extensive expertise and 
a deep understanding of breast pathology13. The rise of digital pathology, which leverages whole-slide images 
(WSIs), has revolutionized research and diagnosis in pathology, particularly in cancer, by enabling more efficient 
data sharing across institutions and promoting remote collaborations. WSIs are high-resolution digital images of 
traditional glass pathology slides, which can be viewed, analyzed, and shared on a computer screen14,15. The use 
of WSIs also paves the way for computational pathology, which started from the use of traditional image analysis 
methods to advanced machine learning (ML) and deep learning (DL) algorithms16,17. Remarkably, these novel 
approaches offer the potential to integrate multiple data modalities, extending beyond histopathology image 
analysis. This includes linking histopathological images with clinical factors, such as prognosis and genetic 
mutations, thereby enhancing BC diagnostics18–20.

Beyond conventional methods, other imaging modalities show promising potential for improving the diag-
nosis and prognosis of BC patients. Among these, hyperspectral (HS) imaging (HSI), combines traditional imag-
ing with spectroscopy to capture both spatial and spectral information. Each material interacts uniquely with 
emitted radiation, reflecting and absorbing it in a way that creates a distinct radiance vector, often named spec-
tral signature. HSI sensors can capture these spectral signatures, acquiring significantly more data than standard 
RGB (Red, Green, Blue) cameras and extending imaging capabilities beyond human vision (e.g., near-infrared 
(NIR) HS sensors can capture wavelengths ranging from 900 to 1,700 nm)21. In recent years, the use of HSI in 
medicine has begun to achieve promising results regarding cancer detection by utilizing cutting-edge ML algo-
rithms to process the high amount of HS data22–24. In the existing literature for medical histological applications, 
HSI has been used to identify pancreatic neoplasms with different prognoses25, quantify Ki67 as a prognostic 
factor in lymphomas26 and study the interactions between tumor cells and immune cells of the tumor microen-
vironment in response to immunotherapy in lung cancer27, obtaining promising results.

Research in this area is still in its early stages, and the number of published studies remains limited. 
Regarding WSI and clinical and demographic databases, The Cancer Genome Atlas (TCGA) is one of the main 
publicly available sources for hematoxylin and eosin (H&E)-stained WSIs and associated clinical and demo-
graphic data28. The main challenge of this database is the lack of annotations, which makes the subsequent anal-
ysis of these WSIs difficult. The Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) 
is another database that provides clinical, demographic, and molecular data of over 2,000 BC cases29. However, 
it primarily focuses on genomic and transcriptomic data and does not include WSIs. Several publicly available 
databases contain H&E-stained WSIs30, but most include annotations focused on specific cell types in BC, such 
as tumor-infiltrating lymphocytes and inflammatory cells. We have identified one database - Breast Cancer 
Semantic Segmentation (BCSS) that provides specific annotations of tissue compartments, distinguishing 
between tumor and healthy tissue31. Regarding medical HS databases only two major sets were identified: in 
2022, Zhang et al.32 introduced a large-scale database for HS microscopic images of precancerous lesions in 
gastric cancer, and in 2024, Ortega et al. released the HistologyHSI-GB dataset33, focused on HS glioblastoma 
histology. None of those databases included clinical or demographic data, this being one of the main challenges 
in this field. There is a limited availability of comprehensive, high-quality databases, which hinders the broader 
application of clinical and demographic data, WSIs and HSI in clinical practice and research. The lack of such 
databases makes it difficult to fully explore the potential of HSI together with conventional practices for diag-
nosing and predicting disease outcomes, such as recurrence in BC.

This paper presents a publicly accessible database designed to investigate specific prognostic biomarkers 
for predicting the likelihood of BC recurrence due to distant metastasis. The HistologyHSI-BC Recurrence 
Database includes clinical and demographic data from BC patients, along with WSIs and HS images obtained 
from their primary tumor samples. This database is intended to evaluate the ability to predict recurrence due to 
distant metastasis over a 12-year follow-up period. Biopsies from 47 patients diagnosed with BC were extracted, 
sliced and stained with H&E, 47 WSIs and 677 microscopic HS images were taken, and their clinical and demo-
graphic data were collected. Among these patients, 22 experienced distant recurrence. A schematic overview of 
the study workflow is presented in Fig. 1.

The HistologyHSI-BC Recurrence Database will benefit researchers by providing a comprehensive, mul-
timodal database that integrates WSIs, HS images, and clinical and demographic data from BC patients. This 
resource enables the development and refinement of predictive models for BC recurrence due to distant metasta-
sis, starting to fill a significant gap in available databases. Researchers can leverage this data to explore innovative 
ML approaches, enhance diagnostic accuracy, and identify novel biomarkers for BC recurrence. Additionally, 
the database promotes reproducibility, facilitates collaboration across institutions, and accelerates research in 
computational pathology, potentially improving personalized treatment strategies and benefiting broader cancer 
research efforts.
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Methods
Patients selection, eligibility criteria and ethics approval.  This is a retrospective case-control study 
carried out on 47 BC patients diagnosed with IDC, now called invasive breast carcinoma of no special type34, 
between 2006 and 2015, who met the eligibility criteria for inclusion (Table 1). Cases include 22 patients who 
experienced recurrence due to distant metastasis during the 12 years following diagnosis. The remaining 25 
patients who did not experience recurrence during the 12 years of follow-up are included as control group.

The study was approved by the Drug Research Ethics Committee of the Institut d’Investigació Sanitària 
Pere Virgili (IISPV), Tarragona, Spain, under reference number 134/2022. The samples used in this study were 
obtained from Biobank IISPV-Node Tortosa, Tarragona, Spain, following the principles of ethical conduct and 
data protection. The Biobank has approved the open publication of the data associated with this work. All par-
ticipants whose samples were stored in the biobank have previously signed an informed consent form, explicitly 
authorizing the collection, storage, and future use of their biological materials and associated data for research 
purposes. The processing, communication and transfer of personal data of all participants comply with the 
provisions of Organic Law 3/2018, of December 5, on the Protection of Personal Data and Guarantee of Digital 
Rights and with Regulation (EU) 2016/679 of the European Parliament and of the Council, of April 27, 2016, on 

Fig. 1  Schematic overview of the study design or workflow. The patient cohort comprises 47 BC patients, of 
which 22 (47%) experienced distant recurrence over a 12-year follow-up period and 25 (53%) did not. All these 
patients had a breast tumor biopsy, which was collected, prepared, and stained with H&E. The H&E-stained 
slides were digitized to obtain WSIs and annotated to differentiate three tissue compartments: IDC, healthy 
tissue and DCIS. Within each annotated area, ROIs were selected, from which HS images were acquired to 
generate HS cubes and extract spectral signatures. Together with the clinical and demographic data, all this 
information constitutes the HistologyHSI - BC Recurrence Database.
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the protection of natural persons with regard to the processing of personal data and the free circulation of these 
data, and repealing Directive 95/46/EC (General Data Protection Regulation). The data generated and collected 
during this study are anonymized to ensure the security of the information, safeguarding the confidentiality and 
privacy of the patients.

Data Collection
Clinical and demographic data.  The data collection process involved extracting information from clinical 
records, including demographic and clinical data, which were following Table 2.

Histopathology WSIs.  Paraffin blocks of primary tumor biopsies with sufficient representative IDC tis-
sue were obtained from the Biobank IISPV-Node Tortosa, Tarragona, Spain. The samples were processed in the 
Pathology Department, where 2 µm-thick sections were prepared from each paraffin block and stained with H&E 
according to the instructions of the manufacturer. The slides were sealed with coverslips using dibutylphthalate 
polystyrene xylene (DPX) mounting medium for subsequent digitization and HS microscopic image acquisition.

The H&E-stained slides were digitized with the Pannoramic 250 Flash III WSI scanner (3DHISTECH Ltd., 
Budapest, Hungary) at 20 × magnification (0.2433 µm/pixel) using MRXS image format. WSIs were visualized 
using QuPath35 (available at: https://qupath.github.io/) for technical validation and annotation, and anonymized 
using the SlideMaster software (3DHISTECH Ltd., Budapest, Hungary). The annotation process of each WSI 
was manually performed by pathologists using diverse colors to distinguish between IDC, healthy tissue, and 
DCIS. The annotations were made with the following color scheme: IDC was outlined in blue, healthy tissue in 
green, and DCIS in red (Fig. 2a).

Moreover, within each of these three tissue compartment types, different regions of interest (ROIs), sur-
rounded by yellow line, were identified and annotated to subsequently acquire the HS image using the HS 
microscopic system (Fig. 2a). These ROIs were selected to ensure the inclusion of representative areas of each 
class (IDC, healthy and DCIS), capturing relevant spectral variability for further analysis.

HS images.  The HS images were captured using a HS microscopic system (Fig. 2b). The system features the 
Hyperspec® VNIR (Visible and Near Infrared) A-Series camera (HeadWall Photonics, Fitchburg, MA, USA), 
a pushbroom HS camera that captures data by scanning the sample spatially. The camera is equipped with a 
charge-coupled device (CCD) sensor that covers a spectral range of 400–1,000 nm, capturing 826 spectral bands 
across 1,004 spatial pixels per line. It offers high spectral resolution with a slit image full width at half maxi-
mum (FWHM) of 2.5 nm and a pixel size of 7.4 μm. Data are acquired with a 12-bit ADC (Analog-to-digital 
Converter), and each HS line has a size of 1,004 × 826 pixels and requires 1.6 MB per line on disk for storage. The 
microscope used is the OLYMPUS BX-53 (Olympus, Tokyo, Japan), with LMPLN-IR (5 × , 10 × ) and LCPLN-IR 
(20 × , 50 × ) objective lenses optimized for infrared imaging. The system uses a 100 W TH4 halogen lamp 
(Olympus, Tokyo, Japan) as the light source, covering a wavelength range from 400 to 1,800 nm and supporting 
both transmittance and reflectance light paths. To acquire full HS images, the pushbroom camera requires spatial 
scanning, which is facilitated by a SCAN 130 × 85 scanning stage (Märzhäuser, Wetzlar, Germany). The stage 
ensures high precision ( ± 3 μm accuracy) as it moves the sample, keeping it aligned with the objective and light 
path. Furthermore, an RGB camera, the acA5472-17uc (Basler AG, Ahrensburg, Germany), provides real-time 
visualization of the sample to navigate it without the need of using the microscope binoculars. It is a 20 MP com-
pact camera with a Sony IMX183 CMOS sensor (Tokyo, Japan), 5,496 × 3,672 resolution, and 17 fps. It features 
USB 3.0, a C-mount, and supports hardware/software triggers.

Calibration of the HS images is necessary to ensure the data accurately represents the sample’s spectral signa-
tures. The HS microscope captures spectral signatures for each pixel, but factors like the sensor’s response, light 
transmission, and the light source can affect accuracy. The calibration process involves normalizing the pixel 
values of the HS image by adjusting them based on a white reference (WR) and a dark reference (DR). WR is 
obtained by focusing on an empty area of the slide at the same working distance. This ensures no sample material 
is present, allowing the frame to record the maximum signal the sensor can measure for each pixel and wave-
length under the given conditions (e.g., exposure time, light intensity, and slide properties). Conversely, the DR 
is captured by completely blocking light transmission to the HS camera. This frame captures the minimum sig-
nal levels detectable by the sensor for each pixel and band, as well as dark current information from the CCD. 
Ideally, DR values approach zero; however, higher values may occur due to intrinsic sensor noise. To enhance the 
reliability of the calibration process, 100 frames are collected for both the WR and DR, ensuring that averaging 
reduces potential errors. Finally, the calibration of the HS image is achieved using Eq. (1), which relates the cal-
ibrated HS image (ri) to the raw HS image (Rawi).

Inclusion Exclusion

A diagnosis of IDC Receipt of neoadjuvant treatment, as it is known to modify the 
tumor microenvironment

Representativeness of IDC tissue in surgical biopsy Recurrence occurring in the breast rather than in distant organs

A clinical history with complete clinical and pathological data Presence of distant metastases at the time of diagnosis

Patient’s agreement to be included in the study Failure to meet any of the inclusion criteria

Table 1.  Eligibility criteria for patient inclusion.
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In-house software was developed to serve multiple functions in the HSI acquisition process. It displays the 
RGB image to facilitate sample navigation under the microscope and ensures synchronization between the HS 
camera and the scanning platform by aligning their frame rate and platform movement. After capturing the 
HS image, the software removes the extreme bands from the raw HS image (reducing the spectral range from 

Attribute Definition Format

Demographic Data

Sex Patients’ gender 1: Female

Race Patients’ race 1: White

Ethnicity Patients’ ethnicity 1: Hispanic

Menopausal status Menopausal status of the patient 0: Premenopause and 1: Postmenopause

Diagnosis
Dx surgery Type of surgery 0: Mastectomy and 1: Lumpectomy

Dx age Difference between diagnosis and birth dates Years

Tumor Data

Tumor diameter Maximum diameter of the irregular shaped tumor Millimeters

Tumor histologic grade Degree of differentiation of tumor cells, reflecting how different 
they are from normal breast cells 1: Grade 1, 2: Grade 2 and 3: Grade 3

LVI Presence of tumor cells within lymphatic or blood vessels 0: Negative and 1: Positive

PNI Ability of cancer cells to proliferate around peripheral nerves and, 
eventually, invade them 0: Negative and 1: Positive

Tumor Stage

T (tumor) Tumor size assessed by pathological evaluation 1: T1, 2: T2, 3: T3, and 4: T4

N (node) The cancer has spread to the LNs assessed by pathological 
evaluation 0: N0, 1: N1, 2: N2 and 3: N3

M (metastasis) Status of breast cancer spreading to a different part of the body 0: M0

Tumor Molecular Markers

ER Status of ER 0: Negative and 1: Positive

PR Status of PR 0: Negative and 1: Positive

HER2 Status of HER2 0: Negative and 1: Positive

KI67 Index quantifying KI67 expression to measure how fast cancer 
cells are dividing in a tumor 0: KI67 index < 20% and 1: KI67 index ≥ 20%

Molecular subtype Classification according to IHC status of ER, PR, HER2 and Ki67 0: Luminal A, 1: Luminal B HER2-, 2: Luminal B 
HER2+, 3: HER2+, and 4: Triple negative

LNs Status

LN status Status of the spreading of tumor cells to the SLNs and non-SLNs 0: Negative, 1: ITC, 2: Micrometastasis and 3: 
Macrometastasis

LN ITC number LNs with ITC Natural number

LN MICRO number LNs with micrometastasis Natural number

LN MACRO number LNs with macrometastasis Natural number

LN number LNs removed during SLN biopsy and/or LN dissection Natural number

SLN number LNs removed during SLN biopsy Natural number

SLN status Presence (or absence) of tumor cells in the SLNs 0: Negative, 1: ITC, 2: Micrometastasis and 3: 
Macrometastasis

Tumor Treatment

Tx hormonal Patient received (or not) hormonal treatment 0: Not received and 1: Received

Tx CT Patient received (or not) adjuvant CT after the surgery 0: Not received and 1: Received

Tx trastuzumab Patient received (or not) trastuzumab 0: Not received and 1: Received

Tx RT Patient received (or not) RT 0: Not received and 1: Received

Follow-up

Metastasis type Status of cancer spreading from the primary tumor to other organs 
during the follow-up period

0: No evidence of local or distant metastases, 
1: Metastasized on nearby tissues or LNs, 2: 
Metastasized in distant organs from primary 
site and 3: Both local and distant metastases are 
present

DFS
Time a patient survives without any signs or symptoms of cancer 
after finishing primary treatment. Difference between the relapse 
and diagnosis dates. If the patient did not relapse, the date of last 
follow-up is used instead.

Months

Vital status 0: Alive and 1: Deceased

Death cause 0: Other causes / Still alive and 1: Cancer

OS
Time from the date of cancer diagnosis that patients remain alive. 
Difference between the death and diagnosis dates. If the patient 
did not die, the date of last follow-up is used instead.

Months

Table 2.  Description of the study variables. CT, chemotherapy; DFS, disease-free survival; Dx, diagnosis; ER, 
estrogen receptors; HER2, human epidermal growth factor receptor 2; IHC, immunohistochemistry; ITC, 
isolated tumor cells; KI67, proliferation index; LN, lymph node; LVI, lymphovascular invasion; MACRO, 
macrometastasis; MICRO, micrometastasis; OS, overall survival; PNI, perineural invasion; PR, progesterone 
receptors; RT, radiotherapy; SLN, sentinel lymph node; Tx, treatment.
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400–1,000 nm to 400.5–938 nm), as these bands contain significant noise, and then saves the raw HS image. The 
calibrated HS image is then generated, using Eq. (1), and saved on memory as five-digit 16-bit unsigned integers 
(uint16), where the most significant digit represents the units, and the remaining digits correspond to the dec-
imal places of the transmittance values. Therefore, to obtain true transmittance values, the calibrated HS image 
must be divided by 104. Additionally, the software creates a synthetic RGB image, following the methodology 
explained by Ortega et al.33, to facilitate the visualization of the spatial characteristics of the HS image.

Prior to any HS image capture, magnification is selected, in this case the 10×. WR and DR reference images 
are collected. Then, to acquire the HS image, the associated WSI is examined in QuPath35 to identify an ROI 
within a specific class, such as IDC (blue), healthy (green) or DCIS (red) tissue. The identified ROI is searched 
for in the HS microscopic system using the RGB camera and marked down on the histological image using a 
yellow rectangle (Fig. 2c). The ROI is then captured using the HS microscope, generating the raw HS image, 
the calibrated HS image, and the synthetic RGB image (Fig. 2d). The RGB image of the ROI is also captured 
(Fig. 2e) for future analysis. All data corresponding to one of these captures are saved using an identifier with its 
corresponding metadata, including the patient identifier, classification, and region (e.g., HSI_VNIR_15_IDC_
x10_C01; see Data records section for more details).

Data Records
The HistologyHSI-BC Recurrence Database36 has been deposited at The Cancer Imaging Archive (TCIA) repos-
itory37 to make it publicly available, organized into a multilayer folder arrangement. The database is divided into 
three main components: clinical and demographic data, histological WSI and HS images (see Fig. 3a). The clin-
ical and demographic data are stored at the 00_01_Clinical_Demographic_Data file. This XLSX file documents 
patients’ demographic status, breast tumor characteristics, treatment received, and their follow-up outcomes 
(detailed description on Table 2).

Furthermore, the histological data are structured in 3 folders. Firstly, 01_01_Histological_Images folder 
contains the WSI for each patient, stored as MRXS files. Each WSI requires a corresponding metadata folder 
containing DAT and INI files for proper rendering. Moreover, 01_02_Tissue_Annotations folder includes WSI 
histological annotations that classify tissue types, with boundaries of the regions outlined in blue (IDC), green 
(healthy), and red (DCIS), as shown in Fig. 2a. The third folder, 01_03_HSI_ROI_Annotations contains the ROI 
for each HS image, with the boundaries of the region outlined in yellow (Fig. 2a). Both histological WSI and HS 
image ROI annotation files are provided in GeoJSON format. A summary of the areas of annotations per patient 
and tissue type is shown in Table 3. Lastly, 02_01_HSI_Images folder contains the HS images of the histological 
slides, stored in ENVI format38. Each capture includes the raw HS image, WR and DR calibration files, and the 
calibrated HS image following the procedure described in Eq. (1). As the ENVI standard states, the HS image 
is saved as a flat-binary raster DAT (data) file with an accompanying HDR (header) file containing essential 
metadata to interpret it. Moreover, within each capture folder a synthetic RGB image and a view of the ROI 
captured by the RGB camera are stored. The HS image data are stored in folders named according to the regular 
expression HSI_VNIR_{P}_{TT}_x10_C{CN}, where {P} represents the patient ID, {TT} indicates the tissue type 
(IDC, healthy, or DCIS), and {CN} is the capture number (Fig. 3b).

Technical Validation
Clinical and demographic data statistic analysis.  A preliminary statistical analysis was conducted to 
identify differences in the variables between patients with and without recurrence, as shown in Table 4. Statistical 
tests used for comparisons included the absolute frequency (percentage) for the Chi-square test or Fisher’s exact 
test, and the median (interquartile range) for the Mann-Whitney U test. As expected, certain classic clinical and 
pathological variables were found to be associated with the risk of developing metastasis in the present cohort8, 
including age at diagnosis, tumor diameter, and LVI.

Analysis of lymph nodes status revealed a significantly higher percentage of micrometastasis and macrome-
tastasis in patients with recurrence compared to those without recurrence. This association remained significant 
when considering the number of affected lymph nodes. A similar trend was observed in sentinel lymph nodes 
status, where micrometastasis and macrometastasis were more prevalent in the recurrence group. However, no 
significant differences were found in lymph nodes containing isolated tumor cells, classified as negative lymph 
nodes39. These findings align with established knowledge that lymph node metastasis is associated with a higher 
risk of recurrence in BC patients during follow-up5,40.

Regarding patient follow-up, we confirmed that all patients without recurrence show no evidence of local 
or distant metastases, whereas patients with recurrence do, with most of them having metastases only in dis-
tant organs and a smaller percentage presenting with both local and distant metastases. Among patients with 
recurrence, 90.9% died, with cancer being the cause of death in 77.3% of cases. In contrast, among the patients 
without recurrence who died, none died from cancer. As expected, the median disease-free survival (DFS) was 
significantly shorter in the recurrence group compared to the non-recurrence group, as was overall survival 
(OS).

Histopathology WSIs and annotation validation.  Pathologists qualitatively verified the quality of his-
topathological slides after the sectioning, processing, and staining phases. They confirmed the absence of artifacts 
in the ROIs of the WSIs, ensuring that these were not introduced during the tissue preparation or digitization 
phases. Pathologists did not detect the presence of folds, broken tissues, tears, bubbles, scalpel marks, or bad 
staining on the ROIs due to the tissue preparation phase. Furthermore, they verified the quality of the digitized 
histopathological slides making sure there were no issues on the WSIs due to the scanning phase. They confirmed 
the absence of scanning artifacts like focus issues or white reference problems. The annotations on the WSIs (IDC, 
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healthy, and DCIS) were initially made by one pathologist, with the annotation process then subjected to valida-
tion by a second pathologist through a pairwise review. This validation phase played a crucial role in minimizing 
the inter-observability issue, ensuring consistency and reliability in the annotations. An example of the validated 
annotations is shown in Fig. 4.

HSI validation.  A technical validation was performed to ensure the quality of the HistologyHSI-BC 
Recurrence Database. The HS microscope employed in this study has been thoroughly characterized in previous 
works41, confirming its strong performance for spectral resolution-intensive applications. The system demon-
strates a dynamic range of 65.3 ± 0.1 dB in transmittance mode, with a constant dark current of 20 digital num-
bers, which contributes to a reliable HS image capture. It is capable of capturing 826 spectral bands, providing 
detailed spectral information and accurately reflecting the spectral properties of the materials under analysis. 
This is evidenced by a spectral correlation measure of 0.88 ± 0.01 when capturing the WCT-2065 transmittance 
wavelength calibration standard (Avian Technologies, New London, USA) with a known spectral signature in 
transmittance mode. The system offers a spatial resolution of 0.739 ± 0.001 µm/pixel, along with a modulation 
transfer function (MTF) of 370 ± 10 line pairs/mm, ensuring sufficient detail for microscopic imaging. Spatial 
scanning accuracy is indicated by an eccentricity of 0.04 ± 0.04, and spatial repeatability is shown to have a rela-
tive difference of 14 ± 8% across consecutive captures. All values were measured at 10× magnification, the same 
magnification used for the HS image capturing process in this work.

The characterization parameters obtained from the HS microscopic system demonstrate its capability to pro-
vide reliable and accurate HS data. The HS images captured from the 47 patients studied underwent a calibra-
tion. Afterwards, the database was evaluated to ensure the quality of the captured data. All HS images from each 
patient and tissue class (IDC, healthy and DCIS) were averaged for visualization purposes. Figure 5 groups the 
spectral signatures of patients with and without recurrence after 12 years. Interestingly, in the biopsies, patients 
without recurrence showed a greater similarity between healthy and DCIS tissues, while these tissue types were 
more distinctly separated in patients with recurrence. This finding raises the possibility that the closer resem-
blance of DCIS to healthy tissue could serve as an indicator of non-recurrence.

Fig. 2  Elements and outputs to capture an HS image. (a) Annotated WSI (IDC outlined in blue, healthy tissue 
in green, and DCIS in red) captured with the WSI scanner. (b) HS microscopic system used to acquire an HS 
image and its corresponding high spatial resolution RGB image of a selected ROI. (c) Zoom-in of one of the 
selected ROIs outlined by yellow rectangles in a). (d) Synthetic RGB image generated from the captured HS 
image. (e) High spatial resolution RGB image captured using the 20 MP RGB camera of the HS microscopic 
system.
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Usage Notes
Visualizing histopathology WSIs.  The authors recommend downloading and installing the QuPath soft-
ware35 to visualize the WSIs (MRXS format) and their related annotations (GeoJSON format) (Fig. 2a). Further 
image analysis can be performed using Python scripts (see sections Recommended histopathology WSI pro-
cessing and Code availability). There are two ways to open a WSI in QuPath: drag and drop the MRXS file into 
QuPath or go on “File/Open” and select and open the MRXS file. There is also a tab on the left side of QuPath’s 
user interface called “Image”, in which it is possible to visualize the metadata of the histopathological image, such 
as width, height, magnification, and resolution. After opening the WSI on QuPath, the two available GeoJSON 
files containing annotations on the WSI should be imported. One includes the annotations related to the tissue 
compartments (IDC in red, healthy in green, and DCIS in blue). In contrast, the other defines the ROIs used for 
capturing the HS images, represented as yellow rectangles. These two files can be opened by dragging and drop-
ping them into QuPath or clicking “File/Import objects from file” and selecting the GeoJSON files. The data from 
the GeoJSON files is visible by clicking on the tab “Annotations”. If the annotation classes are not shown after 
clicking the “Annotations” tab, click on the button with the three vertical dots on the bottom right of the tab panel, 

(a)

(b)

01_01_Histological_Images

00_01_Clinical_Demographic_data.xlsx

01_02_Tissue_Annotations

01_03_HS_ROI_Annotations

02_01_HS_Images

15

304

P

• Data0000.dat

• Data0001.dat

…

• Index.dat

• Slidedat.ini

• 15.mrxs

…

• 304. mrxs

• 15.geojson

…

• {P}.geojson

…

• 304.geojson

• 15.geojson

…

• {P}.geojson

…

• 304.geojson

01_IDC

02_Healthy

03_DCIS

HSI_VNIR_{P}_IDC_x10_C{CN}

HSI_VNIR_{P}_Healthy_x10_C{CN}

HSI_VNIR_{P}_DCIS_x10_C{CN}

• raw.hdr

• whiteReference .hdr

• darkReference .hdr

• calibrated .hdr

• raw.dat

• whiteReference .dat

• darkReference .dat

• calibrated .dat

• RGBImage.png

• SyntheticRGBImage.png

HSI_VNIR_{P}_{TT}_x10_C{CN}

Fig. 3  Graphical representation of (a) the HistologyHSI-BC Recurrence Database structure and (b) the 
contents of each HS image capture.
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then select “Populate from existing objects/All classes (including sub-classes)” and the class types along with the 
number of annotations for each will appear.

Recommended histopathology WSI processing.  This section provides guidelines for working with 
WSIs (MRXS format), for which the use of Python scripts is recommended (see the Code availability section for 
more details). Due to their high resolution, efficient processing techniques are necessary to optimize performance 
and memory usage. Processing high-resolution images can be time-consuming and memory intensive. The 

Patient ID

Tissue Annotations Area [mm2] HS image ROI Annotations [Number of captures]

Recurrence LabelIDC Healthy DCIS IDC Healthy DCIS

15 40.94 2.92 64.24 10 0 0 0

19 94.89 24.00 0.00 10 5 0 1

20 169.27 58.36 0.28 10 5 0 1

25 135.97 139.29 17.62 10 5 5 0

38 210.59 7.71 0.23 10 5 0 1

40 72.19 20.77 0.00 10 5 0 1

43 57.46 22.70 0.00 10 5 0 0

45 71.77 80.06 6.70 10 5 5 0

47 10.40 137.41 0.00 10 5 0 0

51 163.12 2.79 2.34 10 5 0 0

52 96.22 3.50 0.00 10 3 0 0

57 23.26 31.54 0.00 10 5 0 0

62 4.40 66.22 0.00 8 5 0 0

65 104.57 15.22 0.00 10 5 0 0

68 21.41 75.70 0.00 10 5 0 0

70 55.12 45.12 0.00 10 5 0 0

80 4.84 37.06 0.00 7 5 0 0

82 109.32 11.99 0.31 10 5 0 0

84 88.06 13.20 7.50 10 5 0 1

85 119.25 5.21 20.59 10 5 5 0

90 179.57 29.70 0.00 10 5 0 0

100 68.16 3.21 0.06 9 4 0 1

107 8.43 192.86 7.70 10 5 5 0

112 14.84 1.68 0.00 10 0 0 0

124 26.84 0.36 0.00 10 0 0 0

136 190.00 25.98 28.52 9 4 5 0

138 32.58 90.49 11.91 10 5 0 0

139 43.23 72.05 0.00 10 5 0 0

141 168.53 7.96 5.27 10 5 0 1

146 24.16 3.47 0.32 10 0 0 0

151 3.98 3.78 1.10 4 0 0 0

152 82.41 42.77 19.22 10 5 5 1

153 7.06 77.57 0.88 8 5 0 0

154 51.74 0.00 0.00 10 0 0 1

162 67.66 16.19 1.72 10 5 0 1

189 247.15 0.02 0.00 10 0 0 1

197 212.83 57.60 4.90 10 5 5 1

205 321.29 35.69 0.14 10 5 0 1

211 161.00 0.10 0.09 10 0 0 1

213 451.91 7.64 0.00 10 5 0 1

229 281.13 3.09 2.02 10 3 0 1

238 149.90 0.00 0.00 9 0 0 1

255 164.85 35.81 0.50 10 5 0 1

259 92.43 42.47 2.35 10 5 0 1

269 59.97 6.65 0.00 10 5 0 1

270 30.11 111.68 0.00 10 5 0 1

304 155.02 24.54 0.00 10 5 0 1

Table 3.  Summary of histological area coverage and capture counts by tissue type per image.
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Attribute Format Recurrence Non-Recurrence p

Demographic Data

Sex 1: Female 22 (100.0) 25 (100.0) —

Race 1: White 22 (100.0) 25 (100.0) —

Ethnicity 1: Hispanic 22 (100.0) 25 (100.0) —

Menopausal status 0: Premenopause
1: Postmenopause

3 (13.6)
19 (86.4)

3 (12.0)
22 (88.0) 1.000*

Diagnosis
Dx surgery 0: Mastectomy

1: Lumpectomy
7 (31.8)
15 (68.2)

2 (8.0)
23 (92.0) 0.063*

Dx age Years 73.0 [22.0] 57.0 [14.0] 0.017‡

Tumor Data

Tumor diameter Millimeters 26.5 [13.8] 15.0 [13.0] <0.001‡

Tumor histologic grade
1: Grade 1
2: Grade 2
3: Grade 3

1 (4.5)
11 (50.0)
10 (45.5)

4 (16.0)
14 (56.0)
7 (28.0)

0.285*

LVI 0: Negative
1: Positive

8 (36.4)
14 (63.6)

18 (72.0)
7 (28.0) 0.031*

PNI 0: Negative
1: Positive

15 (68.2)
7 (31.8)

21 (84.0)
4 (16.0) 0.351*

Tumor Stage

T (tumor)
1: T1
2: T2
3: T3
4: T4

5 (22.7)
14 (63.6)
2 (9.1)
1 (4.5)

17 (68.0)
8 (32.0)
0 (0.0)
0 (0.0)

0.012*

N (node)
0: N0
1: N1
2: N2
3: N3

8 (36.4)
7 (31.8)
5 (22.7)
2 (9.1)

25 (100.0)
0 (0.0)
0 (0.0)
0 (0.0)

<0.001*

M (metastasis) 0: M0 22 (100.0) 25 (100.0) —

Tumor Molecular Markers

ER 0: Negative
1: Positive

4 (18.2)
18 (81.8)

5 (20.0)
20 (80.0) 1.000*

PR 0: Negative
1: Positive

6 (27.3)
16 (72.7)

9 (36.0)
16 (64.0) 0.744*

HER2 0: Negative
1: Positive

15 (68.2)
7 (31.8)

22 (88.0)
3 (12.0) 0.154*

KI67 0: KI67 index < 20%
1: KI67 index ≥ 20%

4 (18.2)
18 (81.8)

10 (40.0)
15 (60.0) 0.189*

Molecular subtype

0: Luminal A
1: Luminal B HER2− 
2: Luminal B HER2+
3: HER2+
4: Triple negative

4 (18.2)
10 (45.5)
4 (18.2)
3 (13.6)
1 (4.5)

6 (24.0)
13 (52.0)
2 (8.0)
1 (4.0)
3 (12.0)

0.512*

LNs Status

LN status
0: Negative
1: ITC
2: Micrometastasis
3: Macrometastasis

6 (27.3)
2 (9.1)
3 (13.6)
11 (50.0)

22 (88.0)
3 (12.0)
0 (0.0)
0 (0.0)

<0.001*

LN ITC number Number of LNs with ITC 0.0 [0.0] 0.0 [0.0] 0.720‡

LN MICRO number Number of LNs with micrometastasis 0.0 [0.0] 0.0 [0.0] 0.027‡

LN MACRO number Number of LNs with macrometastasis 0.5 [7.0] 0.0 [0.0] <0.001‡

LN number Total number of LNs removed during SLN biopsy and/or LN 
dissection 13.0 [15.0] 2.0 [2.0] 0.001‡

SLN number Number of LNs removed during SLN biopsy 0.5 [2.0] 2.0 [2.0] <0.001‡

SLN status
0: Negative
1: ITC
2: Micrometastasis
3: Macrometastasis

4 (36.4)
2 (18.2)
2 (18.2)
3 (27.3)

22 (88.0)
3 (12.0)
0 (0.0)
0 (0.0)

0.002*

Tumor Treatment

Tx hormonal 0: Not received
1: Received

5 (22.7)
17 (77.3)

4 (16.0)
21 (84.0) 0.715*

Tx CT 0: Not received
1: Received

11 (50.0)
11 (50.0)

14 (56.0)
11 (44.0) 0.906*

Tx trastuzumab 0: Not received
1: Received

19 (86.4)
3 (13.6)

23 (92.0)
2 (8.0) 0.654*

Tx RT 0: Not received
1: Received

3 (13.6)
19 (86.4)

3 (12.0)
22 (88.0) 1.000*

Follow-up

Metastasis type
0: No evidence of local or distant metastases
1: Metastasized on nearby tissues or LNs
2: Metastasized in distant organs from primary site
3: Both local and distant metastases are present

0 (0.0)
0 (0.0)
20 (90.9)
2 (9.1)

25 (100.0)
0 (0.0)
0 (0.0)
0 (0.0)

<0.001*

DFS Months 39.0 [48.0] 150.0 [28.0] <0.001‡

Vital status 0: Alive
1: Deceased

2 (9.1)
20 (90.9)

21 (84.0)
4 (16.0) <0.001*

Death cause 0: Other causes / Still alive
1: Cancer

5 (22.7)
17 (77.3)

25 (100.0)
0 (0.0) <0.001*

OS Months 66.5 [85.0] 150.0 [28.0] <0.001‡
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highest available resolution of the selected slide image is approximately 85,000 × 202,000 pixels, making it signif-
icantly large. To optimize performance, a lower resolution (approximately 670 × 1,600) level should be selected 
for visualization. It is also important to downscale the annotations to match the selected lower resolution level.

Recommended HSI processing.  After HS data capture, the calibration of HS images is a mandatory step; 
however, additional processing may be performed depending on the specific application of the data.

•	 Given the strong correlation between adjacent spectral bands, spectral dimensionality reduction can be ben-
eficial in reducing intrinsic Gaussian noise and computational costs. This can be accomplished by averaging 
adjacent spectral bands to create a spectrally reduced HS image. For example, the data could be reduced from 
the original 826 bands to 275 using a spectral window that includes three neighboring bands.

•	 Normalization is also recommended when partial absorbance is less critical, but the specific absorption wave-
lengths are significant. This normalization can be performed to scale the data between 0 and 1 or to have a 
mean of 0 and a standard deviation of 1.

•	 For HS analysis of the samples, it is advised to remove the sample background by identifying areas with no 
absorbance, typically represented by the white background.

•	 The classification of the data can be based on recurrence status and/or tissue type (IDC, healthy, or DCIS). 
When using ML or DL, it is crucial to ensure that data from the same patient do not appear simultaneously in 
the training, testing, or validation sets.

All these processing steps can be implemented using Python (see the Code availability section for further 
details).

How to combine the different databases (clinical and demographic, WSIs, and HSI).  Integrating 
the diverse databases within the Histology HSI-BC Recurrence Database can enhance the prediction of distant 
recurrence in BC by leveraging complementary information from multiple modalities. Histopathological WSIs 
provide morphological insights assessed by pathologists, HS images capture biochemical variations that may 
indicate early tumor progression, and clinical and demographic data offer critical patient-specific factors. By inte-
grating these databases, researchers can develop more robust predictive models that go beyond traditional his-
tological or clinical assessments, improving risk stratification and supporting personalized treatment decisions.

Researchers can employ various data fusion strategies to achieve this integration. Early fusion involves com-
bining raw or preprocessed features from each modality before model training, allowing the model to learn 
directly from the integrated data42. Intermediate fusion entails extracting high-level features from each database 
separately and then merging them into a joint representation, capturing modality-specific patterns prior to inte-
gration43. Late fusion consists of training independent models for each modality and subsequently combining 
their outputs to improve overall prediction accuracy19. Implementing these fusion techniques requires meticu-
lous preprocessing to ensure compatibility and maximize the value of each database. By effectively integrating 
these multimodal databases, researchers can uncover subtle patterns associated with BC recurrence, advancing 
precision oncology and personalized patient care.

Data availability
The HistologyHSI-BC Recurrence Database is publicly available on the TCIA repository at https://doi.
org/10.7937/6KPY-YT49.

Table 4.  Differences in the clinical and demographic variables in recurrence vs. non-recurrence groups. Data 
are expressed as absolute frequency (percentage) for qualitative variables, compared using the Chi-square 
test or Fisher’s exact text*, and as median [interquartile range] for quantitative variables, analyzed using the 
Mann-Whitney U test‡. CT, chemotherapy; DFS, disease-free survival; Dx, diagnosis; ER, estrogen receptors; 
HER2, human epidermal growth factor receptor 2; ITC, isolated tumor cells; KI67, proliferation index; LN, 
lymph node; LVI, lymphovascular invasion; MACRO, macrometastasis; MICRO, micrometastasis; OS, overall 
survival; PNI, perineural invasion; PR, progesterone receptors; RT, radiotherapy; SLN, sentinel lymph node; Tx, 
treatment.

Fig. 4  Examples of (a) IDC, (b) healthy, and (c) DCIS tissue types on a WSI at 2x magnification.
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Code availability
The Python scripts developed for this study, along with the required Python toolboxes and libraries, are 
available in the publicly accessible repository at https://github.com/HIRIS-Lab/HistologyHSI-BC-Recurrence. 
The repository includes a main script providing a basic example of how to load and perform preliminary 
preprocessing of hyperspectral data in ENVI format using Python, for which the spectral library is required. 
In addition, the repository contains a tutorial demonstrating how to manipulate WSI in MRXS format and 
annotation in GeoJSON format in Python. The script overlays tissue compartments (IDC, healthy, and DCIS) 
onto slide images using their corresponding colors: blue, green, and red. Working with WSIs in Python requires 
the installation of the OpenSlide library. In addition, the JSON library is used for loading annotations, and the PIL 
library is employed to prepare and save slide images.
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