Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/147316
Título: Adaptive Meshes in Graph Neural Networks for Predicting Sea Surface Temperature Through Remote Sensing
Autores/as: Reyes, José G.
Cuervo-Londoño, Giovanny A.
Sánchez, Javier 
Clasificación UNESCO: 3304 Tecnología de los ordenadores
2510 Oceanografía
Palabras clave: Graph Neural Networks
Adaptive Mesh
Deep Learning
Sea Surface Temperature
Remote Sensing
Fecha de publicación: 2025
Editor/a: Springer 
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 21st International Conference in Computer Analysis of Images and Patterns (CAIP 2025) 
Resumen: Accurate sea surface temperature (SST) forecasting is key for understanding marine and climatic dynamics, but remains challenging in high-variability regions such as coastal zones. Deep learning techniques have recently surpassed traditional numerical methods in computational efficiency and accuracy in prediction tasks. In particular, graph neural networks (GNNs) have demonstrated outstanding performance in forecasting climate variables and are attracting interest for modeling ocean dynamics. This work aims to adapt a GNN, originally designed for atmospheric data, to predict the temperature at the ocean surface. However, this type of neural network typically relies on regular meshes, which struggle to capture nonlinear oceanographic processes. Therefore, we propose to use a physically-informed mesh that adapts node density based on the bathymetry of the sea, prioritizing coastal areas. Our method integrates satellite-derived SST data with flexible graph topologies by restructuring latent representations through physics-aware graphs. The model is optimized with the L4 SST satellite images dataset from the Copernicus Marine Service. The results demonstrate that adaptive meshes reduce forecasting errors compared to regular grids, particularly near the coast. This approach bridges geospatial data and graph-based learning, showing that node allocation based on static forcings enhances model performance. The results highlight the potential of geometric deep learning for operational oceanography, offering improved interpretability and accuracy in complex geophysical systems based on remote sensing.
URI: https://accedacris.ulpgc.es/jspui/handle/10553/147316
ISBN: 978-3-032-05059-5
ISSN: 0302-9743
DOI: 10.1007/978-3-032-05060-1_31
Fuente: Computer Analysis of Images and Patterns: 21st International Conference (CAIP 2025), [ISBN 978-3-032-05059-5], Las Palmas de Gran Canaria, 22-25 septiembre 2025
Colección:Actas de congresos
pdf
Adobe PDF (4,34 MB)
pdf
Adobe PDF (4 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.