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Abstract. Accurate sea surface temperature (SST) forecasting is key
for understanding marine and climatic dynamics, but remains challeng-
ing in high-variability regions such as coastal zones. Deep learning tech-
niques have recently surpassed traditional numerical methods in compu-
tational efficiency and accuracy in prediction tasks. In particular, graph
neural networks (GNNs) have demonstrated outstanding performance
in forecasting climate variables and are attracting interest for model-
ing ocean dynamics. This work aims to adapt a GNN, originally de-
signed for atmospheric data, to predict the temperature at the ocean
surface. However, this type of neural network typically relies on regular
meshes, which struggle to capture nonlinear oceanographic processes.
Therefore, we propose to use a physically-informed mesh that adapts
node density based on the bathymetry of the sea, prioritizing coastal ar-
eas. Our method integrates satellite-derived SST data with flexible graph
topologies by restructuring latent representations through physics-aware
graphs. The model is optimized with the L4 SST satellite images dataset
from the Copernicus Marine Service. The results demonstrate that adap-
tive meshes reduce forecasting errors compared to regular grids, partic-
ularly near the coast. This approach bridges geospatial data and graph-
based learning, showing that node allocation based on static forcings
enhances model performance. The results highlight the potential of ge-
ometric deep learning for operational oceanography, offering improved
interpretability and accuracy in complex geophysical systems based on
remote sensing.

Keywords: Graph Neural Networks · Adaptive Mesh · Deep Learning
· Sea Surface Temperature · Remote Sensing.
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1 Introduction

Forecasting SST is a fundamental task in physical oceanography, with broad
applications ranging from climate modeling and marine ecosystem management
to fisheries and extreme event prediction. Accurate SST predictions are espe-
cially significant in coastal regions, where dynamic processes such as upwelling,
eddies, and thermal fronts exhibit complex and nonlinear behavior. While phys-
ically grounded, traditional numerical models often face limitations in compu-
tational cost and spatial resolution, particularly in high-variability areas where
fine-grained predictions are needed.

In recent years, deep learning approaches, and specifically Graph Neural Net-
works (GNNs), have emerged as a promising alternative, offering flexible data
representations and powerful capabilities to learn spatiotemporal patterns from
remote sensing data [19, 10].

GNNs have demonstrated remarkable progress in various geophysical fore-
casting tasks, including weather prediction, traffic flow estimation, and now in-
creasingly in oceanography. These models operate on graph-structured data,
enabling them to model irregular domains and capture long-range spatial de-
pendencies more effectively than traditional convolutional architectures. Recent
works such as GraphCast [9], SeaCast [6], and GNN-Surrogate [18] have shown
that GNNs can outperform conventional models, especially when deployed on
large-scale Earth system datasets. However, a common limitation of most ex-
isting GNN-based prediction models is their reliance on fixed, uniform spatial
discretizations, which fail to capture the spatial heterogeneity of ocean processes,
particularly near the coast [7, 17].

Recent advancements in adaptive graph techniques have addressed these
shortcomings: i) Adaptive Graph Learning: Models like AGLNM [19] dynami-
cally update the adjacency matrix during training via a graph loss mechanism,
uncovering hidden spatial dependencies to improve SST prediction accuracy.
SD-LPGC [10] further constructs static and dynamic graphs to capture long-
and short-term spatial patterns with personalized convolutional filters; ii) Hi-
erarchical and Multiscale Mesh Adaptation: To balance resolution and compu-
tational cost, GNN-Surrogate [18, 12] employs unstructured hierarchical meshes
with adaptive resolutions, enabling efficient exploration of ocean simulation pa-
rameter spaces. Multiscale GNN architectures with Adaptive Mesh Refinement
(AMR) [16] mimic multigrid solvers, locally refining nodes in regions that
require high fidelity. iii) Attention Mechanisms and Memory Networks: GM-
SAN [17] uses multi-head self-attention to extract global dependencies and build
adaptive graphs among multiple SST points. Graph Memory Neural Networks
(GMNN) [11, 12] integrate a graph encoder with temporal LSTM modules to
handle irregular SST regions and missing-data zones caused by islands or coast-
lines.

Graph Convolution Networks (GCN) coupled with Computational Fluid Dy-
namics (CFD) have demonstrated the ability to predict previously unseen flow
behaviors [4], and tools like MeshCNN [5] and PolyGen [14] have advanced direct
mesh analysis and generation with high accuracy and efficiency.
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Anisotropic remeshing techniques [2, 13] refine meshes based on geometric
complexity and velocity gradients, concentrating resolution where needed. More-
over, studies reveal an inverse relationship between node count in Graph Ele-
ment Networks (GENs) [1] and RMSE, with strategic node placement in high-
complexity regions offering superior accuracy under limited computational bud-
gets.

This paper addresses these issues by introducing a novel, physically-informed,
mesh strategy for GNN-based SST forecasting. Instead of relying on uniformly
distributed nodes, we propose a graph construction paradigm that adapts the
spatial resolution based on the bathymetry. Our approach increases node density
in coastal regions, where SST dynamics are more complex, and reduces it in deep
ocean areas with more stable thermal patterns. This leads to the development
of adaptive meshes that enhance the representational power of GNNs without
incurring additional computational costs. Our contributions are threefold:
– Physically-informed adaptive mesh design: We propose a new mesh con-

struction method where node density is inversely related to ocean depth,
guided by bathymetric data, ensuring more accurate representation of SST
dynamics in coastal zones.

– Integration with hierarchical GNN architectures: We embed these adaptive
meshes within a bipartite graph neural network inspired by GraphCast and
SeaCast, incorporating a multi-resolution structure for efficient spatial in-
formation propagation.

– Empirical validation in coastal upwelling scenarios: We conduct experiments
on the Canary current coastal upwelling system using the L4 SST dataset
from the Copernicus Marine Service. Results show that our bathymetry-
based mesh significantly improves the performance of uniform mesh base-
lines, particularly near the coast.

The paper is organized as follows: Section 2 introduces the dataset and the
architecture of our graph neural network, including the design of the proposed
adaptive meshes. Section 3 presents the experimental results, evaluating the
impact of different mesh strategies. Finally, Section 4 discusses implications,
limitations, and directions for future research.

2 Methods and Data

To address the inherent limitations of regular grids in predicting dynamic coastal
phenomena, we developed a novel methodology centered on adapting the under-
lying graph topology guided by relevant physical forcings. Our starting point is
an initial graph with a regular grid structure, upon which we apply two suc-
cessive transformations designed to optimize spatial representativeness in those
regions where ocean dynamics exhibit greater complexity.

2.1 High Resolution SST Dataset

We use the High Resolution Level 4 Reprocessed Sea Surface Temperature
dataset provided by the Copernicus Marine Service [3]. Our analysis focuses
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on the region of the Canary Islands and the northwest African coast, which is
included within the spatial extent of this product.

This dataset provides daily gap-free SST maps classified as a Level 4 product.
The horizontal resolution of these maps is 0.05◦ × 0.05◦, allowing for detailed
analysis of temperature structures in our area of interest.

The temporal extent of this dataset spans from January 1, 1982, to December
31, 2023, providing us with an extensive time series for training and evaluating
our forecasting models. The product represents a daily-mean SST field at 20 cm
depth. The data used to generate this product comes from satellite observations
of the European Space Agency Sea Surface Temperature Climate Change Initia-
tive (ESA SST CCI) for the period 1982-2016 and from the Copernicus Climate
Change Service (C3S) L3 product for the period 2017 to present. The processing
level is 4, meaning it is a spatially complete analysis.

We selected the spatial extent from latitude 19.55◦ to 34.52◦ N and longi-
tude −20.97◦ to −5.98◦ E, which includes the Canary Islands and the northwest
African coast, the focus of our study. This area is a subset of the original prod-
uct’s full domain. This dataset is updated annually and is available in NetCDF-4
format. This high-resolution and reprocessed dataset from the Copernicus Ma-
rine Service provides a solid and reliable basis for investigating the forecasting
of SST in our area of interest.

2.2 Architecture of the Graph Neural Network

Our graph neural network architecture draws inspiration from the groundbreak-
ing GraphCast model [9], which achieved major advancements in machine learning-
based weather forecasting. Building on GraphCast’s conceptual framework, Neural-
LAM [15] introduced a similar encode-process-decode structure, but employed a
distinct bipartite graph design. This approach was later adapted by SeaCast [6]
for specialized oceanographic applications. Our work builds on the bipartite
graph structure proposed by Neural-LAM and SeaCast, adapting it to model
the complex, non-linear dynamics of the ocean.

The model works in an autoregressive way, x̂t+1 = f(xt,xt−1), where a
future SST state x̂t+1 is estimated from two previous time instants xt and xt−1,
mapped from a latitude-longitude grid into a graph-based representation.

The bipartite graph is denoted as G (Vg, Vm, Em, Eg2m, Em2g), comprising
two distinct sets of nodes: Grid nodes (Vg) that are arranged in a regular grid,
directly corresponding to the spatial structure of the input SST data given in
matrix format. They serve as the initial representation of data; Mesh nodes
(Vm) that are organized in a hierarchical multi-level graph with three levels
of resolution (L1, L2, L3). Each subsequent coarser level contains progressively
fewer nodes and longer-range connections, allowing for the representation of
multiscale oceanographic processes; see Fig. 1. The focus of our contribution lies
in adapting this multi-level mesh component.

Edges within the mesh connect its nodes (Em), while edges Eg2m and Em2g

facilitate information exchange between the grid nodes and the mesh nodes.
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The encoder transforms the input data from the grid into the mesh with
information about the location of each node. The processor comprises several
layers that facilitate efficient local and global information propagation through
message-passing mechanisms. Subsequently, the decoder projects the processed
features back to the spatial grid, predicting the future state as a residual update.
The output of the decoder can then be fed into the system in an autoregressive
way to forecast the SST over multiple days.

The training process is organized in two phases: In the first one, batches
of three consecutive time instant samples are organized randomly, and the pa-
rameters of the network are calculated using the AdamW optimizer during 150
epochs; In the second phase, the samples are increased to contain up to four out-
put estimates, so that the network can predict multiple forecasts in the future,
optimizing the parameters for each lead time. The dataset is split into four years
for the training set, one year for validation, and one year for the test set.

One of the benefits of this model is that it can produce skillful medium-range
forecasts significantly faster than traditional systems, achieving a full 10-day
global forecast in under one minute on a single TPU device.

2.3 Mesh Configurations

In this work, we investigate the impact of various mesh configurations, Vm, on
the predictive performance of our GNN, particularly in the context of coastal
upwelling. To overcome the limitations of the static grid configurations, particu-
larly in capturing the complex dynamics of the coast, we developed a physically
informed node densification mesh. We start with an initial regular grid and apply
successive transformations to optimize spatial representativeness.

We compare the mesh configurations, each utilizing the same number of nodes
at each corresponding level {L1 : 3548, L2 : 394, L3 : 45} for a fair comparison
across our hierarchical graph structure. Table 1 shows the statistics of the three
meshes.

Table 1. Mesh Statistics for each level (L1, L2, L3) and configuration (Uniform, Ran-
dom, Bathymetry-based), representing the number of nodes and edges, and the number
of connections (min, max, avg) between nodes. At L1, all three meshes have 3568 nodes,
but the Uniform mesh has significantly more edges. The number of nodes decreases to
394 (L2) and 45 (L3), with the U-mesh maintaining approximately 20% and 10% more
edges than the R-mesh and B-mesh at these levels and a higher average degree.

Mesh size Level 1 Level 2 Level 3
U-mesh R-mesh B-mesh U-mesh R-mesh B-mesh U-mesh R-mesh B-mesh

Nodes 3568 3568 3568 394 394 394 45 45 45
Edges 27578 21216 21192 2848 2298 2248 268 242 208
Min degree 4 6 4 4 6 4 4 6 4
Max degree 16 24 26 16 22 22 16 16 20
Avg degree 15.46 11.89 11.88 14.46 11.66 11.41 11.91 10.76 9.24
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Uniform Grided Mesh (U-mesh): Following the approach in [15, 6], this
mesh is adapted to the geometry of the coastline, with nodes distributed regu-
larly over the ocean domain and edges connecting the closest neighbors, form-
ing potentially intersecting rectangular triangles (Fig. 1). This contrasts with
more geometrically regular strategies employing non-intersecting equilateral tri-
angles [8, 9].

Random Mesh (R-mesh): In this configuration, we place the nodes randomly
in the mesh following a uniform distribution and create edges with Delaunay
triangulation. The resulting graph has fewer edges than the U-mesh due to the
absence of intersecting triangles, allowing us to assess the importance of regular
node distribution and connection density.

Batimetry-based Mesh (B-mesh): This strategy distributes the nodes ac-
cording to the bathymetry of the study area. Recognizing the higher SST vari-
ability in shallow waters, we concentrate more nodes in these areas and fewer in
deeper and more stable waters. Node placement follows the inverse probability
of depth, p(x) = 1

B(x)+ϵ , with B(x) being the bathymetry at point x and ϵ a

small constant. The probability distribution function is given by F (x) = p(x)∑
p(x)

.

The hierarchical organization of all mesh configurations (U-mesh, R-mesh,
and B-mesh) follows the structure proposed in [15], with connections between
nodes at the same level (Li) and across adjacent levels (Li−1 and Li+1). Coarser
levels (Li+1) feature fewer nodes and long-range connections for efficient in-
formation propagation, while finer levels (Li−1) have a higher node density and
shorter connections for modeling local interactions; see Fig. 1 and Table 1. Addi-
tionally, in our specific implementation of the bipartite graph, we have modified
the connection strategy between Vg and Vm such that each Vg

i is consistently
connected to exactly three nodes in Vm at level L1. This differs from the original
connection scheme in [15] and ensures a consistent information flow between the
two graph components.

These configurations will allow us to understand the influence of the distri-
bution of nodes in the mesh and the number of edges between them. It will also
allow us to study the accuracy improvement that results from the node density,
especially in regions near the coast.

3 Results

In the experiments, the model was trained with the three mesh configurations,
and we compared the RMSE score using the test dataset. A global assessment
revealed that the random and bathymetry-based distributions did not yield a sig-
nificant statistical reduction in RMSE over the entire domain. The mean RMSE
remained virtually unchanged compared to the U-mesh baseline, indicating that
the new meshes alone are not sufficient to enhance overall accuracy. This is
reasonable as the improvements are located in a small fraction of the domain.
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Fig. 1. Mesh configurations. The first column shows three levels of the uniform mesh
(U-mesh); In the middle column, the random mesh (R-mesh); and the bathymetry-
based mesh (B-mesh) on the right. The first row shows the coarsest scale, L3, of each
mesh, with fewer nodes and edges; the second row shows an intermediate scale, L2;
and the last row, the finest scale, L1, with high density of nodes and edges.

However, the spatial analysis of the RMSE in Fig. 2 revealed a decrease in
the upwelling area near the capes. In these locations, the RMSE improved by an
average of 2.36% after applying the B-mesh. This localized improvement suggests
that the concentration of nodes more accurately captures coastal processes.
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Fig. 2. Spatial RMSE maps in SST prediction for days 1, 5, 10, and 15, using the three
mesh configurations. The U-mesh presents artifacts with square patterns, especially
visible from day 10 onwards. In all cases, the error is mainly concentrated in coastal
zones, especially near the capes. However, the B-mesh shows a notable qualitative
improvement by reducing these liocalized errors and adapting better to the oceanic
topography. Squares in the top-rght map highlight regions where the differences are
more significant (see Fig. 3 for a close-up).

Interestingly, when comparing the configurations separately by region, oceanic
and coastal, with different total numbers of nodes each, we found that a sparse
version, with approximately 75% fewer nodes in open waters, maintained the
same level of accuracy without deteriorating the global performance. This sug-
gests that the location of nodes is more relevant than their absolute quantity:
removing nodes in areas with linear oceanic behavior does not penalize accuracy
and reduces computational costs.

Although the RMSE was globally similar, the predictions made with the
B-mesh showed greater spatial coherence and superior detail of mesoscalar fila-
ments compared to the regular mesh, evidencing a more realistic resolution of
upwelling structures (Fig. 3), with a clear improvement near the capes.

These findings indicate that topological densification partially addresses the
coast prediction problem; however, their global effectiveness requires a broader
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Fig. 3. RMSE in ◦K for the U-, B-, and R-mesh configurations across subdomains:
Cape Ghir, Juby, and Bojador. The U-mesh exhibits square-shaped artifacts due to
its grid configuration and higher RMSE near the coast. A significant improvement in
accuracy is observed for the B- and R-meshes, especially in capes Juby and Bojador,
as reflected in lower RMSE values. No artifacts are visible in these cases.

combination of forcings and optimization criteria to achieve consistent RMSE
reductions across the entire ocean domain. The results reveal that the adaptive
redistribution of nodes in geometric graphs applied to oceanographic predic-
tion models offers limited improvements but provides valuable insights into the
interaction between mesh topology, physical forcings, and local accuracy.

The localized reduction of RMSE in the capes was not only due to node
density, but also to the coincidence between the adaptive mesh and a real physical
pattern, underscoring that the alignment between graph topology and relevant
forcings is crucial in areas where the forcing is the leading mechanism.

As anticipated in Section 2, densification based exclusively on bathymetry
imposes a bias: it favors shallow areas without guaranteeing that these corre-
spond to processes of interest. This bias was evident in regions where upwelling
showed no direct correlation with depth, resulting in an inefficient redistribu-
tion of computational resources. Therefore, although a quality improvement of
the predictions was achieved (e.g., no square artifacts), there was no significant
improvement in the model’s accuracy.

One important finding was that the reduction in the number of nodes did
not compromise accuracy in regions of low variability. In the open ocean, where
conditions approach a quasi-linear regime, the decrease in nodes allowed for
maintaining predictive performance while reducing computational cost. This re-
sult challenges the common assumption that increasing the density improves
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the accuracy. Instead, it suggests that an intelligent distribution, based on the
underlying dynamics, is more effective than a dense mesh.

These findings align with previous research that demonstrates higher pre-
cisions by strategically positioning nodes in areas of high nonlinearity [1, 12].
However, our approach emphasizes that it is not enough to guide densification
by bathymetry but also by its physical dynamics.

4 Conclusion

This work presented a novel approach to SST forecasting by integrating physi-
cally informed adaptive meshes into a GNN framework. By leveraging bathy-
metric information to redistribute mesh node density—particularly in high-
variability coastal zones—the proposed method addresses limitations inherent
in uniform grid models, which often struggle to capture nonlinear ocean dynam-
ics.

Three mesh configurations were evaluated: a uniform grid (U-mesh), a ran-
dom distribution (R-mesh), and a bathymetry-based adaptive mesh (B-mesh).
While global forecasting performance, as measured by RMSE, remained largely
unchanged, the B-mesh demonstrated clear improvements in coastal regions and
capes. It attains similar results with far fewer edges, reducing computational
complexity. These localized accuracy gains underscore the value of incorporat-
ing physical priors into graph topology design, enhancing model performance
where fine-scale resolution is needed.

The study revealed that reasonable node placement can match or surpass
dense uniform meshes while reducing computational overhead. This finding sug-
gests that strategic mesh adaptation offers a more efficient and scalable path for
geophysical forecasting models. Qualitatively, B-mesh forecasts exhibited greater
spatial coherence and finer representation of mesoscale SST structures.

Future work should explore multi-modal physical forcings, such as ocean cur-
rents, wind patterns, and temperature gradients, as drivers for mesh refinement.
Incorporating ensemble learning or probabilistic frameworks could also enhance
forecast robustness. Integrating domain knowledge with geometric deep learning
holds significant potential for advancing operational oceanography and climate
modeling from remote sensing.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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