Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/jspui/handle/10553/147316
DC FieldValueLanguage
dc.contributor.authorReyes, José G.en_US
dc.contributor.authorCuervo-Londoño, Giovanny A.en_US
dc.contributor.authorSánchez, Javieren_US
dc.date.accessioned2025-09-22T09:12:48Z-
dc.date.available2025-09-22T09:12:48Z-
dc.date.issued2025en_US
dc.identifier.isbn978-3-032-05059-5en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/147316-
dc.description.abstractAccurate sea surface temperature (SST) forecasting is key for understanding marine and climatic dynamics, but remains challenging in high-variability regions such as coastal zones. Deep learning techniques have recently surpassed traditional numerical methods in computational efficiency and accuracy in prediction tasks. In particular, graph neural networks (GNNs) have demonstrated outstanding performance in forecasting climate variables and are attracting interest for modeling ocean dynamics. This work aims to adapt a GNN, originally designed for atmospheric data, to predict the temperature at the ocean surface. However, this type of neural network typically relies on regular meshes, which struggle to capture nonlinear oceanographic processes. Therefore, we propose to use a physically-informed mesh that adapts node density based on the bathymetry of the sea, prioritizing coastal areas. Our method integrates satellite-derived SST data with flexible graph topologies by restructuring latent representations through physics-aware graphs. The model is optimized with the L4 SST satellite images dataset from the Copernicus Marine Service. The results demonstrate that adaptive meshes reduce forecasting errors compared to regular grids, particularly near the coast. This approach bridges geospatial data and graph-based learning, showing that node allocation based on static forcings enhances model performance. The results highlight the potential of geometric deep learning for operational oceanography, offering improved interpretability and accuracy in complex geophysical systems based on remote sensing.en_US
dc.languageengen_US
dc.publisherSpringeren_US
dc.relation.ispartofLecture Notes in Computer Scienceen_US
dc.sourceComputer Analysis of Images and Patterns: 21st International Conference (CAIP 2025), [ISBN 978-3-032-05059-5], Las Palmas de Gran Canaria, 22-25 septiembre 2025en_US
dc.subject3304 Tecnología de los ordenadoresen_US
dc.subject2510 Oceanografíaen_US
dc.subject.otherGraph Neural Networksen_US
dc.subject.otherAdaptive Meshen_US
dc.subject.otherDeep Learningen_US
dc.subject.otherSea Surface Temperatureen_US
dc.subject.otherRemote Sensingen_US
dc.titleAdaptive Meshes in Graph Neural Networks for Predicting Sea Surface Temperature Through Remote Sensingen_US
dc.typebook_contenten_US
dc.relation.conference21st International Conference in Computer Analysis of Images and Patterns (CAIP 2025)en_US
dc.identifier.doi10.1007/978-3-032-05060-1_31en_US
dc.description.lastpage372en_US
dc.description.firstpage361en_US
dc.relation.volume15622en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.description.numberofpages11en_US
dc.utils.revisionen_US
dc.date.coverdateSeptiembre 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr0,606
dc.description.sjrqQ2
dc.description.miaricds10,0
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.event.eventsstartdate22-09-2025-
crisitem.event.eventsenddate25-09-2025-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0001-8514-4350-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameSánchez Pérez, Javier-
Appears in Collections:Actas de congresos
pdf
Adobe PDF (4,34 MB)
pdf
Adobe PDF (4 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.