Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/133368
Título: Efficient plastic detection in coastal areas with selected spectral bands
Autores/as: Pérez García, Ámbar 
van Emmerik, Tim H.M.
Mata, Aser
Tasseron, Paolo F.
López, José F. 
Clasificación UNESCO: 25 Ciencias de la tierra y del espacio
Palabras clave: Artificial Intelligence
Band Selection
Macroplastic Detection
Remote Sensing
Fecha de publicación: 2024
Publicación seriada: Marine Pollution Bulletin 
Resumen: Marine plastic pollution poses significant ecological, economic, and social challenges, necessitating innovative detection, management, and mitigation solutions. Spectral imaging and optical remote sensing have proven valuable tools in detecting and characterizing macroplastics in aquatic environments. Despite numerous studies focusing on bands of interest in the shortwave infrared spectrum, the high cost of sensors in this range makes it difficult to mass-produce them for long-term and large-scale applications. Therefore, we present the assessment and transfer of various machine learning models across four datasets to identify the key bands for detecting and classifying the most prevalent plastics in the marine environment within the visible and near-infrared (VNIR) range. Our study uses four different databases ranging from virgin plastics under laboratory conditions to weather plastics under field conditions. We used Sequential Feature Selection (SFS) and Random Forest (RF) models for the optimal band selection. The significance of homogeneous backgrounds for accurate detection is highlighted by a 97 % accuracy, and successful band transfers between datasets (87 %–91 %) suggest the feasibility of a sensor applicable across various scenarios. However, the model transfer requires further training for each specific dataset to achieve optimal accuracy. The results underscore the potential for broader application with continued refinement and expanded training datasets. Our findings provide valuable information for developing compelling and affordable detection sensors to address plastic pollution in coastal areas. This work paves the way towards enhancing the accuracy of marine litter detection and reduction globally, contributing to a sustainable future for our oceans.
URI: http://hdl.handle.net/10553/133368
ISSN: 0025-326X
DOI: 10.1016/j.marpolbul.2024.116914
Fuente: Marine Pollution Bulletin[ISSN 0025-326X],v. 207, 116914, (Octubre 2024)
Colección:Artículos
Adobe PDF (3,88 MB)
Vista completa

Citas SCOPUSTM   

1
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 17-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.