Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/133368
Campo DC Valoridioma
dc.contributor.authorPérez García, Ámbaren_US
dc.contributor.authorvan Emmerik, Tim H.M.en_US
dc.contributor.authorMata, Aseren_US
dc.contributor.authorTasseron, Paolo F.en_US
dc.contributor.authorLópez, José F.en_US
dc.date.accessioned2024-10-03T06:54:54Z-
dc.date.available2024-10-03T06:54:54Z-
dc.date.issued2024en_US
dc.identifier.issn0025-326Xen_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/133368-
dc.description.abstractMarine plastic pollution poses significant ecological, economic, and social challenges, necessitating innovative detection, management, and mitigation solutions. Spectral imaging and optical remote sensing have proven valuable tools in detecting and characterizing macroplastics in aquatic environments. Despite numerous studies focusing on bands of interest in the shortwave infrared spectrum, the high cost of sensors in this range makes it difficult to mass-produce them for long-term and large-scale applications. Therefore, we present the assessment and transfer of various machine learning models across four datasets to identify the key bands for detecting and classifying the most prevalent plastics in the marine environment within the visible and near-infrared (VNIR) range. Our study uses four different databases ranging from virgin plastics under laboratory conditions to weather plastics under field conditions. We used Sequential Feature Selection (SFS) and Random Forest (RF) models for the optimal band selection. The significance of homogeneous backgrounds for accurate detection is highlighted by a 97 % accuracy, and successful band transfers between datasets (87 %–91 %) suggest the feasibility of a sensor applicable across various scenarios. However, the model transfer requires further training for each specific dataset to achieve optimal accuracy. The results underscore the potential for broader application with continued refinement and expanded training datasets. Our findings provide valuable information for developing compelling and affordable detection sensors to address plastic pollution in coastal areas. This work paves the way towards enhancing the accuracy of marine litter detection and reduction globally, contributing to a sustainable future for our oceans.en_US
dc.languageengen_US
dc.relation.ispartofMarine Pollution Bulletinen_US
dc.sourceMarine Pollution Bulletin[ISSN 0025-326X],v. 207, 116914, (Octubre 2024)en_US
dc.subject25 Ciencias de la tierra y del espacioen_US
dc.subject.otherArtificial Intelligenceen_US
dc.subject.otherBand Selectionen_US
dc.subject.otherMacroplastic Detectionen_US
dc.subject.otherRemote Sensingen_US
dc.titleEfficient plastic detection in coastal areas with selected spectral bandsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.marpolbul.2024.116914en_US
dc.identifier.scopus85203191586-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid57989272500-
dc.contributor.authorscopusid55908103300-
dc.contributor.authorscopusid58966214300-
dc.contributor.authorscopusid57219560332-
dc.contributor.authorscopusid7404444793-
dc.identifier.eissn1879-3363-
dc.relation.volume207en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.numberofpages7en_US
dc.utils.revisionen_US
dc.date.coverdateOctubre 2024en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr1,445-
dc.description.jcr5,8-
dc.description.sjrqQ1-
dc.description.jcrqQ1-
dc.description.scieSCIE-
dc.description.miaricds11,0-
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-2943-6348-
crisitem.author.orcid0000-0002-6304-2801-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNamePérez García, Ámbar-
crisitem.author.fullNameLópez Feliciano, José Francisco-
Colección:Artículos
Adobe PDF (3,88 MB)
Vista resumida

Citas SCOPUSTM   

3
actualizado el 09-feb-2025

Citas de WEB OF SCIENCETM
Citations

3
actualizado el 02-feb-2025

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.