Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/120471
Título: Lognormal Features for Early Diagnosis of Alzheimer’s Disease Through Handwriting Analysis
Autores/as: Cilia, Nicole Dalia
D’Alessandro, Tiziana
Carmona-Duarte, Cristina 
De Stefano, Claudio
Diaz, Moises 
Ferrer, Miguel A. 
Fontanella, Francesco
Clasificación UNESCO: 3307 Tecnología electrónica
Fecha de publicación: 2022
Editor/a: Springer 
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 20th International Conference of the International Graphonomics Society, (IGS 2021)
Resumen: Alzheimer’s disease causes most of dementia cases. Although currently there is no cure for this disease, predicting the cognitive decline of people at the first stage of the disease allows clinicians to alleviate its burden. Clinicians evaluate individuals’ cognitive decline by using neuropsychological tests consisting of different sections, each devoted to test a specific set of cognitive skills. The sigma-lognormal model allows complex movements to be represented as a summation of simple time-overlapped movements, and has been used in several fields to model numerous human movements such as, for example, handwriting and speech. Recently, this theory has been also used for detecting and monitoring neurodegenerative disorders. In this paper, we present the results of a preliminary study aimed at exploring the use of lognormal features to classify patients affected by Alzheimer’s disease. The promising results achieved confirms that lognormal features can be used to support Alzheimer’s diagnosis.
URI: http://hdl.handle.net/10553/120471
ISBN: 9783031197444
ISSN: 0302-9743
DOI: 10.1007/978-3-031-19745-1_24
Fuente: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)[ISSN 0302-9743],v. 13424 LNCS, p. 322-335, (Enero 2022)
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

1
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

2
actualizado el 17-nov-2024

Visitas

24
actualizado el 13-abr-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.