Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/120471
Campo DC Valoridioma
dc.contributor.authorCilia, Nicole Daliaen_US
dc.contributor.authorD’Alessandro, Tizianaen_US
dc.contributor.authorCarmona-Duarte, Cristinaen_US
dc.contributor.authorDe Stefano, Claudioen_US
dc.contributor.authorDiaz, Moisesen_US
dc.contributor.authorFerrer, Miguel A.en_US
dc.contributor.authorFontanella, Francescoen_US
dc.date.accessioned2023-02-13T10:39:44Z-
dc.date.available2023-02-13T10:39:44Z-
dc.date.issued2022en_US
dc.identifier.isbn9783031197444en_US
dc.identifier.issn0302-9743en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/120471-
dc.description.abstractAlzheimer’s disease causes most of dementia cases. Although currently there is no cure for this disease, predicting the cognitive decline of people at the first stage of the disease allows clinicians to alleviate its burden. Clinicians evaluate individuals’ cognitive decline by using neuropsychological tests consisting of different sections, each devoted to test a specific set of cognitive skills. The sigma-lognormal model allows complex movements to be represented as a summation of simple time-overlapped movements, and has been used in several fields to model numerous human movements such as, for example, handwriting and speech. Recently, this theory has been also used for detecting and monitoring neurodegenerative disorders. In this paper, we present the results of a preliminary study aimed at exploring the use of lognormal features to classify patients affected by Alzheimer’s disease. The promising results achieved confirms that lognormal features can be used to support Alzheimer’s diagnosis.en_US
dc.languageengen_US
dc.publisherSpringeren_US
dc.relation.ispartofLecture Notes in Computer Scienceen_US
dc.sourceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)[ISSN 0302-9743],v. 13424 LNCS, p. 322-335, (Enero 2022)en_US
dc.subject3307 Tecnología electrónicaen_US
dc.titleLognormal Features for Early Diagnosis of Alzheimer’s Disease Through Handwriting Analysisen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference20th International Conference of the International Graphonomics Society, (IGS 2021)en_US
dc.identifier.doi10.1007/978-3-031-19745-1_24en_US
dc.identifier.scopus85144825801-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid57201252045-
dc.contributor.authorscopusid57581719200-
dc.contributor.authorscopusid58030744300-
dc.contributor.authorscopusid7006594071-
dc.contributor.authorscopusid57224983122-
dc.contributor.authorscopusid55636321172-
dc.contributor.authorscopusid55892622100-
dc.identifier.eissn1611-3349-
dc.description.lastpage335en_US
dc.description.firstpage322en_US
dc.relation.volume13424 LNCSen_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2022en_US
dc.identifier.conferenceidevents149971-
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,32
dc.description.sjrqQ3
dc.description.miaricds10,0
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Física-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4441-6652-
crisitem.author.orcid0000-0003-3878-3867-
crisitem.author.orcid0000-0002-2924-1225-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameCarmona Duarte, María Cristina-
crisitem.author.fullNameDíaz Cabrera, Moisés-
crisitem.author.fullNameFerrer Ballester, Miguel Ángel-
Colección:Actas de congresos
Vista resumida

Citas SCOPUSTM   

1
actualizado el 30-mar-2025

Citas de WEB OF SCIENCETM
Citations

2
actualizado el 30-mar-2025

Visitas

24
actualizado el 13-abr-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.