Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/117841
Título: Synthetic Patient Data Generation and Evaluation in Disease Prediction Using Small and Imbalanced Datasets
Autores/as: Rodríguez Almeida, Antonio José 
Deniz, Alejandro
Balea-Fernández, Francisco Javier 
Quevedo Gutiérrez, Eduardo Gregorio 
Soguero-Ruiz, Cristina
Wägner, Anna Maria Claudia 
Marrero Callicó, Gustavo Iván 
Fabelo, Himar 
Ortega, Samuel
Clasificación UNESCO: 3314 Tecnología médica
Palabras clave: Adaptation models
Artificial Intelligence
Classification
Data Augmentation
Data models, et al.
Fecha de publicación: 2022
Publicación seriada: IEEE Journal of Biomedical and Health Informatics 
Resumen: The increasing prevalence of chronic non-communicable diseases makes it a priority to develop tools for enhancing their management. On this matter, Artificial Intelligence algorithms have proven to be successful in early diagnosis, prediction and analysis in the medical field. Nonetheless, two main issues arise when dealing with medical data: lack of high-fidelity datasets and maintenance of patient's privacy. To face these problems, different techniques of synthetic data generation have emerged as a possible solution. In this work, a framework based on synthetic data generation algorithms was developed. Eight medical datasets containing tabular data were used to test this framework. Three different statistical metrics were used to analyze the preservation of synthetic data integrity and six different synthetic data generation sizes were tested. Besides, the generated synthetic datasets were used to train four different supervised Machine Learning classifiers alone, and also combined with the real data. F1-score was used to evaluate classification performance. The main goal of this work is to assess the feasibility of the use of synthetic data generation in medical data in two ways: preservation of data integrity and maintenance of classification performance.
URI: http://hdl.handle.net/10553/117841
ISSN: 2168-2194
DOI: 10.1109/JBHI.2022.3196697
Fuente: IEEE Journal of Biomedical and Health Informatics [ISSN 2168-2194], v. 10 (10), (Agosto 2022)
Colección:Artículo preliminar
Adobe PDF (343,11 kB)
Vista completa

Citas SCOPUSTM   

18
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

13
actualizado el 17-nov-2024

Visitas

120
actualizado el 29-jun-2024

Descargas

445
actualizado el 29-jun-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.