Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/117841
DC FieldValueLanguage
dc.contributor.authorRodríguez Almeida, Antonio José-
dc.contributor.authorDeniz, Alejandro-
dc.contributor.authorBalea-Fernández, Francisco Javier-
dc.contributor.authorQuevedo Gutiérrez, Eduardo Gregorio-
dc.contributor.authorSoguero-Ruiz, Cristina-
dc.contributor.authorWägner, Anna Maria Claudia-
dc.contributor.authorMarrero Callicó, Gustavo Iván-
dc.contributor.authorFabelo, Himar-
dc.contributor.authorOrtega, Samuel-
dc.date.accessioned2022-08-29T10:31:41Z-
dc.date.available2022-08-29T10:31:41Z-
dc.date.issued2022-
dc.identifier.issn2168-2194-
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/117841-
dc.description.abstractThe increasing prevalence of chronic non-communicable diseases makes it a priority to develop tools for enhancing their management. On this matter, Artificial Intelligence algorithms have proven to be successful in early diagnosis, prediction and analysis in the medical field. Nonetheless, two main issues arise when dealing with medical data: lack of high-fidelity datasets and maintenance of patient's privacy. To face these problems, different techniques of synthetic data generation have emerged as a possible solution. In this work, a framework based on synthetic data generation algorithms was developed. Eight medical datasets containing tabular data were used to test this framework. Three different statistical metrics were used to analyze the preservation of synthetic data integrity and six different synthetic data generation sizes were tested. Besides, the generated synthetic datasets were used to train four different supervised Machine Learning classifiers alone, and also combined with the real data. F1-score was used to evaluate classification performance. The main goal of this work is to assess the feasibility of the use of synthetic data generation in medical data in two ways: preservation of data integrity and maintenance of classification performance.-
dc.languageeng-
dc.relation.ispartofIEEE Journal of Biomedical and Health Informatics-
dc.sourceIEEE Journal of Biomedical and Health Informatics [ISSN 2168-2194], v. 10 (10), (Agosto 2022)-
dc.subject3314 Tecnología médica-
dc.subject.otherAdaptation models-
dc.subject.otherArtificial Intelligence-
dc.subject.otherClassification-
dc.subject.otherData Augmentation-
dc.subject.otherData models-
dc.subject.otherDatabases-
dc.subject.otherDiabetes-
dc.subject.otherDiseases-
dc.subject.otherGenerative Adversarial Networks-
dc.subject.otherImbalance-
dc.subject.otherMachine Learning-
dc.subject.otherMeasurement-
dc.subject.otherMedical diagnostic imaging-
dc.subject.otherSynthetic Data-
dc.titleSynthetic Patient Data Generation and Evaluation in Disease Prediction Using Small and Imbalanced Datasets-
dc.typeinfo:eu-repo/semantics/preprint-
dc.identifier.doi10.1109/JBHI.2022.3196697-
dc.identifier.pmid35930509-
dc.identifier.scopus2-s2.0-85135765248-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.authorscopusid57838532200-
dc.contributor.authorscopusid56405568500-
dc.contributor.authorscopusid57189334144-
dc.contributor.authorscopusid57838078200-
dc.contributor.authorscopusid57221266705-
dc.contributor.authorscopusid55845740700-
dc.contributor.authorscopusid55207356700-
dc.contributor.authorscopusid7401456520-
dc.contributor.authorscopusid56006321500-
dc.investigacionIngeniería y Arquitectura-
dc.type2Artículo preliminar-
dc.utils.revision-
dc.date.coverdateEnero 2022-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-TEL-
dc.description.sjr1,672-
dc.description.jcr7,7-
dc.description.sjrqQ1-
dc.description.jcrqQ1-
dc.description.scieSCIE-
dc.description.miaricds10,4-
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Psicología, Sociología y Trabajo Social-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptGIR IUIBS: Diabetes y endocrinología aplicada-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptDepartamento de Ciencias Médicas y Quirúrgicas-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.orcid0000-0001-6358-5745-
crisitem.author.orcid0000-0003-2028-0858-
crisitem.author.orcid0000-0002-5415-3446-
crisitem.author.orcid0000-0002-7663-9308-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.orcid0000-0002-9794-490X-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameRodríguez Almeida, Antonio José-
crisitem.author.fullNameBalea Fernandez, Francisco Javier-
crisitem.author.fullNameQuevedo Gutiérrez, Eduardo Gregorio-
crisitem.author.fullNameWägner, Anna Maria Claudia-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
crisitem.author.fullNameFabelo Gómez, Himar Antonio-
Appears in Collections:Artículo preliminar
Adobe PDF (343,11 kB)
Show simple item record

SCOPUSTM   
Citations

18
checked on Nov 24, 2024

WEB OF SCIENCETM
Citations

13
checked on Nov 24, 2024

Page view(s)

120
checked on Jun 29, 2024

Download(s)

445
checked on Jun 29, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.