Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/117841
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Rodríguez Almeida, Antonio José | - |
dc.contributor.author | Deniz, Alejandro | - |
dc.contributor.author | Balea-Fernández, Francisco Javier | - |
dc.contributor.author | Quevedo Gutiérrez, Eduardo Gregorio | - |
dc.contributor.author | Soguero-Ruiz, Cristina | - |
dc.contributor.author | Wägner, Anna Maria Claudia | - |
dc.contributor.author | Marrero Callicó, Gustavo Iván | - |
dc.contributor.author | Fabelo, Himar | - |
dc.contributor.author | Ortega, Samuel | - |
dc.date.accessioned | 2022-08-29T10:31:41Z | - |
dc.date.available | 2022-08-29T10:31:41Z | - |
dc.date.issued | 2022 | - |
dc.identifier.issn | 2168-2194 | - |
dc.identifier.other | Scopus | - |
dc.identifier.uri | http://hdl.handle.net/10553/117841 | - |
dc.description.abstract | The increasing prevalence of chronic non-communicable diseases makes it a priority to develop tools for enhancing their management. On this matter, Artificial Intelligence algorithms have proven to be successful in early diagnosis, prediction and analysis in the medical field. Nonetheless, two main issues arise when dealing with medical data: lack of high-fidelity datasets and maintenance of patient's privacy. To face these problems, different techniques of synthetic data generation have emerged as a possible solution. In this work, a framework based on synthetic data generation algorithms was developed. Eight medical datasets containing tabular data were used to test this framework. Three different statistical metrics were used to analyze the preservation of synthetic data integrity and six different synthetic data generation sizes were tested. Besides, the generated synthetic datasets were used to train four different supervised Machine Learning classifiers alone, and also combined with the real data. F1-score was used to evaluate classification performance. The main goal of this work is to assess the feasibility of the use of synthetic data generation in medical data in two ways: preservation of data integrity and maintenance of classification performance. | - |
dc.language | eng | - |
dc.relation.ispartof | IEEE Journal of Biomedical and Health Informatics | - |
dc.source | IEEE Journal of Biomedical and Health Informatics [ISSN 2168-2194], v. 10 (10), (Agosto 2022) | - |
dc.subject | 3314 Tecnología médica | - |
dc.subject.other | Adaptation models | - |
dc.subject.other | Artificial Intelligence | - |
dc.subject.other | Classification | - |
dc.subject.other | Data Augmentation | - |
dc.subject.other | Data models | - |
dc.subject.other | Databases | - |
dc.subject.other | Diabetes | - |
dc.subject.other | Diseases | - |
dc.subject.other | Generative Adversarial Networks | - |
dc.subject.other | Imbalance | - |
dc.subject.other | Machine Learning | - |
dc.subject.other | Measurement | - |
dc.subject.other | Medical diagnostic imaging | - |
dc.subject.other | Synthetic Data | - |
dc.title | Synthetic Patient Data Generation and Evaluation in Disease Prediction Using Small and Imbalanced Datasets | - |
dc.type | info:eu-repo/semantics/preprint | - |
dc.identifier.doi | 10.1109/JBHI.2022.3196697 | - |
dc.identifier.pmid | 35930509 | - |
dc.identifier.scopus | 2-s2.0-85135765248 | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.authorscopusid | 57838532200 | - |
dc.contributor.authorscopusid | 56405568500 | - |
dc.contributor.authorscopusid | 57189334144 | - |
dc.contributor.authorscopusid | 57838078200 | - |
dc.contributor.authorscopusid | 57221266705 | - |
dc.contributor.authorscopusid | 55845740700 | - |
dc.contributor.authorscopusid | 55207356700 | - |
dc.contributor.authorscopusid | 7401456520 | - |
dc.contributor.authorscopusid | 56006321500 | - |
dc.investigacion | Ingeniería y Arquitectura | - |
dc.type2 | Artículo preliminar | - |
dc.utils.revision | Sí | - |
dc.date.coverdate | Enero 2022 | - |
dc.identifier.ulpgc | Sí | - |
dc.contributor.buulpgc | BU-TEL | - |
dc.description.sjr | 1,672 | - |
dc.description.jcr | 7,7 | - |
dc.description.sjrq | Q1 | - |
dc.description.jcrq | Q1 | - |
dc.description.scie | SCIE | - |
dc.description.miaricds | 10,4 | - |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | Departamento de Psicología, Sociología y Trabajo Social | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | Departamento de Matemáticas | - |
crisitem.author.dept | GIR IUIBS: Diabetes y endocrinología aplicada | - |
crisitem.author.dept | IU de Investigaciones Biomédicas y Sanitarias | - |
crisitem.author.dept | Departamento de Ciencias Médicas y Quirúrgicas | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | Departamento de Ingeniería Electrónica y Automática | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.orcid | 0000-0001-6358-5745 | - |
crisitem.author.orcid | 0000-0003-2028-0858 | - |
crisitem.author.orcid | 0000-0002-5415-3446 | - |
crisitem.author.orcid | 0000-0002-7663-9308 | - |
crisitem.author.orcid | 0000-0002-3784-5504 | - |
crisitem.author.orcid | 0000-0002-9794-490X | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.parentorg | IU de Investigaciones Biomédicas y Sanitarias | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.fullName | Rodríguez Almeida, Antonio José | - |
crisitem.author.fullName | Balea Fernandez, Francisco Javier | - |
crisitem.author.fullName | Quevedo Gutiérrez, Eduardo Gregorio | - |
crisitem.author.fullName | Wägner, Anna Maria Claudia | - |
crisitem.author.fullName | Marrero Callicó, Gustavo Iván | - |
crisitem.author.fullName | Fabelo Gómez, Himar Antonio | - |
Appears in Collections: | Artículo preliminar |
SCOPUSTM
Citations
18
checked on Nov 24, 2024
WEB OF SCIENCETM
Citations
13
checked on Nov 24, 2024
Page view(s)
120
checked on Jun 29, 2024
Download(s)
445
checked on Jun 29, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.