Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/117841
Campo DC Valoridioma
dc.contributor.authorRodríguez Almeida, Antonio Joséen_US
dc.contributor.authorDeniz, Alejandroen_US
dc.contributor.authorBalea-Fernández, Francisco Javieren_US
dc.contributor.authorQuevedo Gutiérrez, Eduardo Gregorioen_US
dc.contributor.authorSoguero-Ruiz, Cristinaen_US
dc.contributor.authorWägner, Anna Maria Claudiaen_US
dc.contributor.authorMarrero Callicó, Gustavo Ivánen_US
dc.contributor.authorFabelo, Himaren_US
dc.contributor.authorOrtega, Samuelen_US
dc.date.accessioned2022-08-29T10:31:41Z-
dc.date.available2022-08-29T10:31:41Z-
dc.date.issued2022en_US
dc.identifier.issn2168-2194en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/117841-
dc.description.abstractThe increasing prevalence of chronic non-communicable diseases makes it a priority to develop tools for enhancing their management. On this matter, Artificial Intelligence algorithms have proven to be successful in early diagnosis, prediction and analysis in the medical field. Nonetheless, two main issues arise when dealing with medical data: lack of high-fidelity datasets and maintenance of patient's privacy. To face these problems, different techniques of synthetic data generation have emerged as a possible solution. In this work, a framework based on synthetic data generation algorithms was developed. Eight medical datasets containing tabular data were used to test this framework. Three different statistical metrics were used to analyze the preservation of synthetic data integrity and six different synthetic data generation sizes were tested. Besides, the generated synthetic datasets were used to train four different supervised Machine Learning classifiers alone, and also combined with the real data. F1-score was used to evaluate classification performance. The main goal of this work is to assess the feasibility of the use of synthetic data generation in medical data in two ways: preservation of data integrity and maintenance of classification performance.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Journal of Biomedical and Health Informaticsen_US
dc.sourceIEEE Journal of Biomedical and Health Informatics [ISSN 2168-2194], v. 10 (10), (Agosto 2022)en_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherAdaptation modelsen_US
dc.subject.otherArtificial Intelligenceen_US
dc.subject.otherClassificationen_US
dc.subject.otherData Augmentationen_US
dc.subject.otherData modelsen_US
dc.subject.otherDatabasesen_US
dc.subject.otherDiabetesen_US
dc.subject.otherDiseasesen_US
dc.subject.otherGenerative Adversarial Networksen_US
dc.subject.otherImbalanceen_US
dc.subject.otherMachine Learningen_US
dc.subject.otherMeasurementen_US
dc.subject.otherMedical diagnostic imagingen_US
dc.subject.otherSynthetic Dataen_US
dc.titleSynthetic Patient Data Generation and Evaluation in Disease Prediction Using Small and Imbalanced Datasetsen_US
dc.typeinfo:eu-repo/semantics/preprinten_US
dc.identifier.doi10.1109/JBHI.2022.3196697en_US
dc.identifier.pmid35930509-
dc.identifier.scopus2-s2.0-85135765248-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.authorscopusid57838532200-
dc.contributor.authorscopusid56405568500-
dc.contributor.authorscopusid57189334144-
dc.contributor.authorscopusid57838078200-
dc.contributor.authorscopusid57221266705-
dc.contributor.authorscopusid55845740700-
dc.contributor.authorscopusid55207356700-
dc.contributor.authorscopusid7401456520-
dc.contributor.authorscopusid56006321500-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículo preliminaren_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2022en_US
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr1,672-
dc.description.jcr7,7-
dc.description.sjrqQ1-
dc.description.jcrqQ1-
dc.description.scieSCIE-
dc.description.miaricds10,4-
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Psicología, Sociología y Trabajo Social-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptGIR IUIBS: Diabetes y endocrinología aplicada-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptDepartamento de Ciencias Médicas y Quirúrgicas-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.orcid0000-0001-6358-5745-
crisitem.author.orcid0000-0003-2028-0858-
crisitem.author.orcid0000-0002-5415-3446-
crisitem.author.orcid0000-0002-7663-9308-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.orcid0000-0002-9794-490X-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameRodríguez Almeida, Antonio José-
crisitem.author.fullNameBalea Fernandez, Francisco Javier-
crisitem.author.fullNameQuevedo Gutiérrez, Eduardo Gregorio-
crisitem.author.fullNameWägner, Anna Maria Claudia-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
crisitem.author.fullNameFabelo Gómez, Himar Antonio-
Colección:Artículo preliminar
Adobe PDF (1,45 MB)
Vista resumida

Citas SCOPUSTM   

23
actualizado el 30-mar-2025

Citas de WEB OF SCIENCETM
Citations

16
actualizado el 30-mar-2025

Visitas

120
actualizado el 29-jun-2024

Descargas

445
actualizado el 29-jun-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.