Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/117841
Título: | Synthetic Patient Data Generation and Evaluation in Disease Prediction Using Small and Imbalanced Datasets | Autores/as: | Rodríguez Almeida, Antonio José Deniz, Alejandro Balea-Fernández, Francisco Javier Quevedo Gutiérrez, Eduardo Gregorio Soguero-Ruiz, Cristina Wägner, Anna Maria Claudia Marrero Callicó, Gustavo Iván Fabelo, Himar Ortega, Samuel |
Clasificación UNESCO: | 3314 Tecnología médica | Palabras clave: | Adaptation models Artificial Intelligence Classification Data Augmentation Data models, et al. |
Fecha de publicación: | 2022 | Publicación seriada: | IEEE Journal of Biomedical and Health Informatics | Resumen: | The increasing prevalence of chronic non-communicable diseases makes it a priority to develop tools for enhancing their management. On this matter, Artificial Intelligence algorithms have proven to be successful in early diagnosis, prediction and analysis in the medical field. Nonetheless, two main issues arise when dealing with medical data: lack of high-fidelity datasets and maintenance of patient's privacy. To face these problems, different techniques of synthetic data generation have emerged as a possible solution. In this work, a framework based on synthetic data generation algorithms was developed. Eight medical datasets containing tabular data were used to test this framework. Three different statistical metrics were used to analyze the preservation of synthetic data integrity and six different synthetic data generation sizes were tested. Besides, the generated synthetic datasets were used to train four different supervised Machine Learning classifiers alone, and also combined with the real data. F1-score was used to evaluate classification performance. The main goal of this work is to assess the feasibility of the use of synthetic data generation in medical data in two ways: preservation of data integrity and maintenance of classification performance. | URI: | http://hdl.handle.net/10553/117841 | ISSN: | 2168-2194 | DOI: | 10.1109/JBHI.2022.3196697 | Fuente: | IEEE Journal of Biomedical and Health Informatics [ISSN 2168-2194], v. 10 (10), (Agosto 2022) |
Colección: | Artículo preliminar |
Citas SCOPUSTM
18
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
13
actualizado el 17-nov-2024
Visitas
120
actualizado el 29-jun-2024
Descargas
445
actualizado el 29-jun-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.