Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/114744
Título: Exploratory data analysis and foreground detection with the growing hierarchical neural forest
Autores/as: Palomo, Esteban J.
López-Rubio, Ezequiel
Ortega Zamorano, Francisco 
Benítez-Rochel, Rafaela
Clasificación UNESCO: 1203 Ciencia de los ordenadores
120312 Bancos de datos
Palabras clave: Self-organization
Clustering
Text mining
Image segmentation
Fecha de publicación: 2020
Publicación seriada: Neural Processing Letters 
Resumen: In this paper, a new self-organizing artificial neural network called growing hierarchical neural forest (GHNF) is proposed. The GHNF is a hierarchical model based on the growing neural forest, which is a tree-based model that learns a set of trees (forest) instead of a general graph so that the forest can grow in size. This way, the GHNF faces three important limitations regarding the self-organizing map: fixed size, fixed topology, and lack of hierarchical representation for input data. Hence, the GHNF is especially amenable to datasets containing clusters where each cluster has a hierarchical structure since each tree of the GHNF forest can adapt to one of the clusters. Experimental results show the goodness of our proposal in terms of self-organization and clustering capabilities. In particular, it has been applied to text mining of tweets as a typical exploratory data analysis application, where a hierarchical representation of concepts present in tweets has been obtained. Moreover, it has been applied to foreground detection in video sequences, outperforming several methods specialized in foreground detection.
URI: http://hdl.handle.net/10553/114744
ISSN: 1370-4621
DOI: 10.1007/s11063-020-10360-2
Fuente: Neural Processing Letters [ISSN 1370-4621], n. 52, p. 2537-2563
Colección:Artículos
Vista completa

Visitas

59
actualizado el 27-jul-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.