Please use this identifier to cite or link to this item:
https://accedacris.ulpgc.es/jspui/handle/10553/114744
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Palomo, Esteban J. | en_US |
| dc.contributor.author | López-Rubio, Ezequiel | en_US |
| dc.contributor.author | Ortega Zamorano, Francisco | en_US |
| dc.contributor.author | Benítez-Rochel, Rafaela | en_US |
| dc.date.accessioned | 2022-05-16T18:39:07Z | - |
| dc.date.available | 2022-05-16T18:39:07Z | - |
| dc.date.issued | 2020 | en_US |
| dc.identifier.issn | 1370-4621 | en_US |
| dc.identifier.uri | https://accedacris.ulpgc.es/handle/10553/114744 | - |
| dc.description.abstract | In this paper, a new self-organizing artificial neural network called growing hierarchical neural forest (GHNF) is proposed. The GHNF is a hierarchical model based on the growing neural forest, which is a tree-based model that learns a set of trees (forest) instead of a general graph so that the forest can grow in size. This way, the GHNF faces three important limitations regarding the self-organizing map: fixed size, fixed topology, and lack of hierarchical representation for input data. Hence, the GHNF is especially amenable to datasets containing clusters where each cluster has a hierarchical structure since each tree of the GHNF forest can adapt to one of the clusters. Experimental results show the goodness of our proposal in terms of self-organization and clustering capabilities. In particular, it has been applied to text mining of tweets as a typical exploratory data analysis application, where a hierarchical representation of concepts present in tweets has been obtained. Moreover, it has been applied to foreground detection in video sequences, outperforming several methods specialized in foreground detection. | en_US |
| dc.language | eng | en_US |
| dc.relation.ispartof | Neural Processing Letters | en_US |
| dc.source | Neural Processing Letters [ISSN 1370-4621], n. 52, p. 2537-2563 | en_US |
| dc.subject | 1203 Ciencia de los ordenadores | en_US |
| dc.subject | 120312 Bancos de datos | en_US |
| dc.subject.other | Self-organization | en_US |
| dc.subject.other | Clustering | en_US |
| dc.subject.other | Text mining | en_US |
| dc.subject.other | Image segmentation | en_US |
| dc.title | Exploratory data analysis and foreground detection with the growing hierarchical neural forest | en_US |
| dc.type | info:eu-repo/semantics/Article | en_US |
| dc.type | article | en_US |
| dc.identifier.doi | 10.1007/s11063-020-10360-2 | en_US |
| dc.identifier.scopus | 2-s2.0-85091895939 | - |
| dc.identifier.isi | WOS:000574799900002 | - |
| dc.contributor.orcid | 0000-0002-8547-9393 | - |
| dc.contributor.orcid | #NODATA# | - |
| dc.contributor.orcid | #NODATA# | - |
| dc.contributor.orcid | #NODATA# | - |
| dc.description.lastpage | 2563 | en_US |
| dc.identifier.issue | 3 | - |
| dc.description.firstpage | 2537 | en_US |
| dc.relation.volume | 52 | en_US |
| dc.investigacion | Ingeniería y Arquitectura | en_US |
| dc.type2 | Artículo | en_US |
| dc.utils.revision | Sí | en_US |
| dc.identifier.ulpgc | No | en_US |
| dc.contributor.buulpgc | BU-INF | en_US |
| dc.description.sjr | 0,463 | |
| dc.description.jcr | 2,908 | |
| dc.description.sjrq | Q2 | |
| dc.description.jcrq | Q2 | |
| dc.description.scie | SCIE | |
| item.fulltext | Sin texto completo | - |
| item.grantfulltext | none | - |
| crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional | - |
| crisitem.author.dept | IU de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería | - |
| crisitem.author.orcid | 0000-0002-4397-2905 | - |
| crisitem.author.parentorg | IU de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería | - |
| crisitem.author.fullName | Ortega Zamorano,Francisco | - |
| Appears in Collections: | Artículos | |
WEB OF SCIENCETM
Citations
1
checked on Jan 12, 2026
Page view(s)
30
checked on Jan 10, 2026
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.