Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/114744
DC FieldValueLanguage
dc.contributor.authorPalomo, Esteban J.en_US
dc.contributor.authorLópez-Rubio, Ezequielen_US
dc.contributor.authorOrtega Zamorano, Franciscoen_US
dc.contributor.authorBenítez-Rochel, Rafaelaen_US
dc.date.accessioned2022-05-16T18:39:07Z-
dc.date.available2022-05-16T18:39:07Z-
dc.date.issued2020en_US
dc.identifier.issn1370-4621en_US
dc.identifier.urihttp://hdl.handle.net/10553/114744-
dc.description.abstractIn this paper, a new self-organizing artificial neural network called growing hierarchical neural forest (GHNF) is proposed. The GHNF is a hierarchical model based on the growing neural forest, which is a tree-based model that learns a set of trees (forest) instead of a general graph so that the forest can grow in size. This way, the GHNF faces three important limitations regarding the self-organizing map: fixed size, fixed topology, and lack of hierarchical representation for input data. Hence, the GHNF is especially amenable to datasets containing clusters where each cluster has a hierarchical structure since each tree of the GHNF forest can adapt to one of the clusters. Experimental results show the goodness of our proposal in terms of self-organization and clustering capabilities. In particular, it has been applied to text mining of tweets as a typical exploratory data analysis application, where a hierarchical representation of concepts present in tweets has been obtained. Moreover, it has been applied to foreground detection in video sequences, outperforming several methods specialized in foreground detection.en_US
dc.languageengen_US
dc.relation.ispartofNeural Processing Lettersen_US
dc.sourceNeural Processing Letters [ISSN 1370-4621], n. 52, p. 2537-2563en_US
dc.subject1203 Ciencia de los ordenadoresen_US
dc.subject120312 Bancos de datosen_US
dc.subject.otherSelf-organizationen_US
dc.subject.otherClusteringen_US
dc.subject.otherText miningen_US
dc.subject.otherImage segmentationen_US
dc.titleExploratory data analysis and foreground detection with the growing hierarchical neural foresten_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typearticleen_US
dc.identifier.doi10.1007/s11063-020-10360-2en_US
dc.identifier.scopus2-s2.0-85091895939-
dc.identifier.isiWOS:000574799900002-
dc.contributor.orcid0000-0002-8547-9393-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.description.lastpage2563en_US
dc.identifier.issue3-
dc.description.firstpage2537en_US
dc.relation.volume52en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgcNoen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr0,463
dc.description.jcr2,908
dc.description.sjrqQ2
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.orcid0000-0002-4397-2905-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameOrtega Zamorano,Francisco-
Appears in Collections:Artículos
Show simple item record

Page view(s)

59
checked on Jul 27, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.