Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/114744
Título: | Exploratory data analysis and foreground detection with the growing hierarchical neural forest | Autores/as: | Palomo, Esteban J. López-Rubio, Ezequiel Ortega Zamorano, Francisco Benítez-Rochel, Rafaela |
Clasificación UNESCO: | 1203 Ciencia de los ordenadores 120312 Bancos de datos |
Palabras clave: | Self-organization Clustering Text mining Image segmentation |
Fecha de publicación: | 2020 | Publicación seriada: | Neural Processing Letters | Resumen: | In this paper, a new self-organizing artificial neural network called growing hierarchical neural forest (GHNF) is proposed. The GHNF is a hierarchical model based on the growing neural forest, which is a tree-based model that learns a set of trees (forest) instead of a general graph so that the forest can grow in size. This way, the GHNF faces three important limitations regarding the self-organizing map: fixed size, fixed topology, and lack of hierarchical representation for input data. Hence, the GHNF is especially amenable to datasets containing clusters where each cluster has a hierarchical structure since each tree of the GHNF forest can adapt to one of the clusters. Experimental results show the goodness of our proposal in terms of self-organization and clustering capabilities. In particular, it has been applied to text mining of tweets as a typical exploratory data analysis application, where a hierarchical representation of concepts present in tweets has been obtained. Moreover, it has been applied to foreground detection in video sequences, outperforming several methods specialized in foreground detection. | URI: | http://hdl.handle.net/10553/114744 | ISSN: | 1370-4621 | DOI: | 10.1007/s11063-020-10360-2 | Fuente: | Neural Processing Letters [ISSN 1370-4621], n. 52, p. 2537-2563 |
Colección: | Artículos |
Visitas
59
actualizado el 27-jul-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.