Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/114223
Título: Low-power hyperspectral anomaly detector implementation in cost-optimized FPGA devices
Autores/as: Caba, Julián
Díaz Martín, María 
Barba Romero, Jesús
Guerra Hernández, Raúl Celestino 
Escolar, Soledad
López Suárez, Sebastián 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Anomaly Detection
FPGA
High-Level Synthesis
Hyperspectral Imaging
Line-By-Line Performance, et al.
Fecha de publicación: 2022
Publicación seriada: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 
Resumen: Onboard data processing for on-the-fly decision-making applications has recently gained momentum in the field of remote sensing. In this context, hyperspectral anomaly detection has received a special attention since its main purpose lays on the identification of abnormal events in an unsupervised manner. Nevertheless, onboard real-time hyperspectral image processing still poses several challenges before becoming a reality. This is why there is an emerging trend towards the development of hardware-friendly algorithmic solutions embedded in reconfigurable devices. In this context, this work contributes with a hardware architecture that ensures a progressive line processing in time-sensitive applications limited by the scarcity of hardware resources. In this sense, we have implemented the state-of-the-art HW-LbL-FAD detector on a reconfigurable hardware for a real-time performance. Specifically, we have selected a cost-optimized FPGA (ZC7Z020-CLG484) to implement our solution whose results draw up a good trade-off between the following three features: time performance, energy consumption and cost. The experimental results indicate our hardware component is able to process hyperspectral images of 825x1024 pixels and 160 bands in 0.51 seconds with a power-budget of 1.3 watts and a device cost around 150 C. Regarding detection performance, the HW-LbL-FAD algorithm outperforms other state-of-the-art algorithms.
URI: http://hdl.handle.net/10553/114223
ISSN: 1939-1404
DOI: 10.1109/JSTARS.2022.3157740
Fuente: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [ISSN 1939-1404], v. 15, p. 2379-2393, (Enero 2022)
Colección:Artículos
miniatura
pdf
Adobe PDF (4,54 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.