Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/112903
Título: Improving approximate-TMR using multi-objective optimization genetic algorithm
Autores/as: Albandes, I.
Serrano-Cases, A.
Sánchez Clemente, Antonio José 
Martins, M.
Martinez-Alvarez, A.
Cuenca-Asensi, S.
Kastensmidt, F. L.
Clasificación UNESCO: 330790 Microelectrónica
Palabras clave: Approximate circuits
ATMR
Fault tolerance
Genetic algorithm
Multi-objective optimization
Fecha de publicación: 2018
Editor/a: Institute of Electrical and Electronics Engineers (IEEE) 
Conferencia: 19th Latin-American Test Symposium (LATS 2018) 
Resumen: Approximate Triple Modular Redundancy (ATMR), which is the implementation of TMR with approximate versions of the target circuit, has emerged in recent years as an alternative to partial replication. This work presents a novel approach for implementing approximate TMR that combines an approximate gate library (ApxLib) with a Multi-Objective Optimization Genetic Algorithm (MOOGA). The algorithm initially performs a blind search, over the huge solution space, optimizing error coverage and area overhead altogether over the next interactions. Experiments compare our approach with a state of the art technique showing an improvement of trade-offs for different benchmark circuits.
URI: http://hdl.handle.net/10553/112903
ISBN: 978-1-5386-1472-3
DOI: 10.1109/LATW.2018.8349665
Fuente: Latin American Test Workshop, LATW, p. 1-6
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.