Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/112903
Título: | Improving approximate-TMR using multi-objective optimization genetic algorithm | Autores/as: | Albandes, I. Serrano-Cases, A. Sánchez Clemente, Antonio José Martins, M. Martinez-Alvarez, A. Cuenca-Asensi, S. Kastensmidt, F. L. |
Clasificación UNESCO: | 330790 Microelectrónica | Palabras clave: | Approximate circuits ATMR Fault tolerance Genetic algorithm Multi-objective optimization |
Fecha de publicación: | 2018 | Editor/a: | Institute of Electrical and Electronics Engineers (IEEE) | Conferencia: | 19th Latin-American Test Symposium (LATS 2018) | Resumen: | Approximate Triple Modular Redundancy (ATMR), which is the implementation of TMR with approximate versions of the target circuit, has emerged in recent years as an alternative to partial replication. This work presents a novel approach for implementing approximate TMR that combines an approximate gate library (ApxLib) with a Multi-Objective Optimization Genetic Algorithm (MOOGA). The algorithm initially performs a blind search, over the huge solution space, optimizing error coverage and area overhead altogether over the next interactions. Experiments compare our approach with a state of the art technique showing an improvement of trade-offs for different benchmark circuits. | URI: | http://hdl.handle.net/10553/112903 | ISBN: | 978-1-5386-1472-3 | DOI: | 10.1109/LATW.2018.8349665 | Fuente: | Latin American Test Workshop, LATW, p. 1-6 |
Colección: | Actas de congresos |
Citas SCOPUSTM
12
actualizado el 08-dic-2024
Visitas
53
actualizado el 06-abr-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.