Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/77790
Título: Using a Deep Learning Algorithm to Improve the Results Obtained in the Recognition of Vessels Size and Trajectory Patterns in Shallow Areas Based on Magnetic Field Measurements Using Fluxgate Sensors
Autores/as: Perez, Marina
Parras, Juan
Zazo, Santiago
Pérez Álvarez, Iván Alejandro 
Sanz Lluch, María del Mar
Clasificación UNESCO: 3308 Ingeniería y tecnología del medio ambiente
Palabras clave: Magnetic sensors
Fluxgate
Magnetic simulations
Vessels
Deep learning, et al.
Fecha de publicación: 2022
Proyectos: Controlando Las Redes de Comunicaciones Electromagneticas Submarinas Mediante Despliegues Autoconfigurables. Subproyecto UPM.
Publicación seriada: IEEE Transactions on Intelligent Transportation Systems 
Resumen: Safety in coastal areas such as beaches, ports, pontoons, etc., is a current problem with a difficult solution and on which many organizations are putting efforts in terms of technological innovation. In this work the design of a possible solution based on magnetic sensors is presented. First, a study has been made of the type of sensors that best suit the application based on parameters such as sensitivity, the allowed bandwidth of excitation, price or physical construction. Then the system of excitation of the sensors and signal measurement is presented. To justify the design, a series of simulations of magnetic field variations have been carried out in the presence of large objects of conductive material, in the vicinity of the measuring points. With these data a mathematical model has been established that allows the identification of the dimensions and position of the object through triangulation and knowing only the data of the magnetic field. It was found that although this method seems quite effective, it has a significant error, so another method based on neural networks was developed also using data from the simulations. This method seems to yield much better and more reliable results
URI: http://hdl.handle.net/10553/77790
ISSN: 1524-9050
DOI: 10.1109/TITS.2020.3036906
Fuente: IEEE Transactions on Intelligent Transportation Systems [ISSN 1524-9050], v. 23(4), p. 3472 - 3481
Colección:Artículos
miniatura
Adobe PDF (2 MB)
Vista completa

Citas de WEB OF SCIENCETM
Citations

2
actualizado el 15-dic-2024

Visitas

157
actualizado el 21-sep-2024

Descargas

230
actualizado el 21-sep-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.