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Abstract— Safety in coastal areas such as beaches, ports,
pontoons, etc., is a current problem with a difficult solution and
on which many organizations are putting efforts in terms of
technological innovation. In this work the design of a possible
solution based on magnetic sensors is presented. First, a study
has been made of the type of sensors that best suit the application
based on parameters such as sensitivity, the allowed bandwidth
of excitation, price or physical construction. Then the system of
excitation of the sensors and signal measurement is presented.
To justify the design, a series of simulations of magnetic field
variations have been carried out in the presence of large objects
of conductive material, in the vicinity of the measuring points.
With these data a mathematical model has been established that
allows the identification of the dimensions and position of the
object through triangulation and knowing only the data of the
magnetic field. It was found that although this method seems
quite effective, it has a significant error, so another method
based on neural networks was developed also using data from
the simulations. This method seems to yield much better and
more reliable results.

Index Terms— Magnetic sensors, fluxgate, magnetic simula-
tions, vessels, deep learning, deep neural networks, pattern
recognition.

I. INTRODUCTION

THE need to control vessels in shallow maritime areas such
as coasts, ports or pontoons, begins to acquire a great
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interest. Because of that, within the HERAKLES [1] project,
we have worked on the sensorization of a network of nodes to
achieve a method that allows for the surveillance, identification
and monitoring of objectives. The information obtained in each
of the nodes is shared and used collaboratively in such a way
that it is mandatory to speak of a network structure.

Currently there is a great development in the field of
underwater networks based on various types of sensors [2], [3]
for networks of detection, identification, surveillance or aid to
navigation [4]–[6] or for other applications such as scientific
use [7] or as communication networks for various uses [8].

Of all the different types of communications nodes used
in underwater applications, the most widespread for detection
and identification are acoustic based sensors, due to the high
propagation speed of sound in water (1500 m/s). It is a
relatively old technology that has been perfected for many
years. Nowadays, new modem models are appearing, and are
contributing to improve the acoustic sensors based networks
[9] while the transducers are usually called hydrophones. This
type of sensors is made using (in most of the cases) piezo-
electric materials to convert mechanical energy in electrical
energy. It allows to register information that comes as a sound
wave (pressure in water particles). There are lots of examples
of applications which use this kind of sensors as main elements
in underwater acoustic networking. [10].

Therefore, the most used Wireless Sensor Network (WSN)
for the underwater medium is the Acoustic Underwater
WSN (AUWSN) due to the lower attenuation of acoustic
waves in the sea water. Hence, it is no surprise that AUWSN
are used for many tasks, such as monitoring applications,
disaster management, military related applications, assisted
navigation, localization and tracking [1]. There are several
localization methods used in AUWSN [2]–[5], which can be
broadly classified into time or angle of arrival methods, and
received power. In time of arrival localization methods it is
frequent to use anchor nodes [6], although self-localization
algorithms exists to alleviate the deployment cost of such
anchor nodes [7]. The methods based on time or angle of
arrival are more popular due to the time-varying path loss
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and the strong multipath effect of the underwater channel,
as [3] shows; however, the powerful approximation capabilities
of deep neural networks are being used to locate using the
received acoustic power, as [8]–[10] show.

Even though sonar and hydrophones are the preferred sen-
sors for most developments in underwater acoustic networks,
networking that uses this type of sensors has problems as path
loss, noise, multipath, propagation delay and other problems
related with Doppler effect [22].

Currently the acoustic sonar technology fully justifies its use
as a widely used element within the networks of identification,
detection of objects and many of other applications [11], [12],
but there are other alternatives.

In this work we are going to present two important novelties:
on the one hand, instead of acoustic, we have developed a net-
work whose propagation is based instead on electromagnetic
fields. On the other hand, we propose the installation of a series
of magnetic sensors combined with hydrophones, in the nodes
of a submerged network, in such a way that the information
obtained from both sensors allows to improve the detection
and identification that was done until now using only sonar
technology.

The advantages of EM network have been properly
addressed in [26] as the core of HERAKLES [1] project,
where a theoretical and simulated propagation model was
cross-checked with extensive measurement campaigns show-
ing interesting properties about coverage, antenna design and
link characteristic.

The election of magnetic sensors to develop the network has
been carried out considering the resolution that they allow.
The measure that sensors provide is defined in terms of
magnetic field variations allowing measures of units of pT.
Even slightly worse resolutions permit estimate the shape of
the object, its size or even its magnetic structure [23], which is
an information difficult to obtain using acoustic technology. In
addition, magnetic field variation reaches the sensor as a non-
mechanical wave consequently in terms of the channel through
wave propagates, there is no possibility of dispersion because
certain effects like water composition variations, existence of
unwanted elements into the communication channel, etc. This
is why this paper justifies the use of magnetic sensors as
unique devices to get the detection and complete characteriza-
tion of vessels. Information that, in some cases, could be com-
plemented with information obtained using acoustic resources.

The magnetic sensors will offer information regarding the
size and distance of the object [23] and by processing the
received signal it will be possible to find out the path that is
being followed within the area of the network. In this way
it can be obtained information related to the navigation of
boats (trajectory, speed, etc.) whose size makes identification
difficult through other methods, besides being considered non-
collaborative vehicles, that is, they do not have any device
installed that contains and transmits information accessible
by the control authorities such as ports or other surveillance
entities.

This work has been divided into 3 parts. In the first part
we talk about hardware necessary to handle the magnetic
sensors: a small explanation about the sensors used, the signal

excitation and magnetic field measurement electronics and the
mention of a calibration circuit necessary to cancel the possible
perturbations to the extent caused by the existence of objects in
the measurement environment that are not vessels. The second
part is the simulations that have been done to justify the use
of the magnetic sensors together with the analysis of them
and the description of the triangulation process that should be
done with the sensed nodes to obtain the size of the object
and its location within of the network.

As an alternative to this procedure we have developed
another method using the data obtained in the simulations as
inputs in a neural network that results in more precise and
extensive information about the size of the vessel, its location
and the trajectory that follows. The third part of this work
describes the use of the neural network and justifies its use as
a universal function approach.

II. SENSORS COMPARATION

There are many types of magnetic sensors. Most of them are
commercial and are sold with integrated electronic. Others are
manufactured more specifically for each application, adapting
them to requirements of size, weight, sensitivity, etc.

In the work presented in [24] a compilation of the main
characteristics of different types of magnetic sensors is made.
For the required application, the use of magnetoresistive
anisotropy (AMR) sensors and fluxgate sensors was evaluated.
The benefits that each one allowed in the following aspects
were studied:

1.- Sensitivity and resolution required. Detection occurs
when measuring variations from 10nT to 100nT over the
Earth’s magnetic field estimated at 64μT.
2.- Working bandwidth. The sensors are placed at a
certain distance from the control unit, so the excitation
of them will be in AC to avoid noise.
3.- Physical characteristics. The space provided by the
communications node limits the dimensions of the sen-
sors in size and weight.
4.- Price of the sensors.

The size and weight characteristics of the sensors, as well
as their price, do not seem to be decisive in ruling out one type
or the other. The fluxgate sensors are so much more expensive
the more sensitivity they require, however, the associated elec-
tronics are simpler than the AMRs, which are manufactured as
integrated devices but require a more complex setup. In terms
of size, the fluxgate are as big as the ferrite cores that make
them up. In addition, aspects like the type of core, number
of turns by winding in the primary and secondary influence
on performance that are decisive as sensitivity or resolution.
But, even in very specific requirements, the dimensions of the
fluxgate do not make it impossible to implement.

The sensors will be placed at a distance that will vary
between 6 and 30 meters with variations due to the oscillation
of the boat due to the waves, estimated at 1 meter. At this
distance, the field induced by the object measuring the sensor
is between 100 and 200nT for a standard object size, and the
variation per meter is estimated between 10 and 50nT, so the
resolution and sensitivity parameters are determinant to choose
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a type of sensor. The fluxgate allows resolutions lower than
100pT while the AMR have resolutions of 8’5nT. In the case
of sensitivity, the first can give 1·105V / T while the AMR
will give 50V / T.

Finally, the bandwidth is compared. This parameter is
important because it gives the frequency values in which it is
preferable to make the sensor work. In order to avoid interfer-
ences with communications between nodes, an operating band
is chosen around the tens of KHz. It has been thought of a
fundamental tone frequency of around 15KHz. This frequency
does not interfere with any other frequency used in the rest
of the system and is suitable for excitation of the magnetic
core. The bandwidth of the fluxgate extends from 5KHz and
the bandwidth of the AMR goes from direct current to 5MHz
(approximately).

Therefore, fluxgate sensors are chosen because they offer
the best performance in terms of resolution and sensitivity,
with the rest of the parameters being equally valid in the two
types of sensors.

III. PROPOSED SOLUTION

A. Sensor Head

The sensor used is a fluxgate formed by two cores of
magnetic material placed against each other, to eliminate the
presence of the fundamental tone, and a secondary winding.
Also included is a ground field compensation system (zero
calibration) composed of a third coil. The model is similar to
the one used in [23] for the control of air traffic in airports.

To improve the sensitivity, between 7 and 10 1.5mm ×
35mm tapes of METGLAS 2714A, which is an alloy of
amorphous material based on cobalt, was used as a core of
magnetic material. For the windings of the sensor itself as
well as the compensation coils, 0.02mm wire was used and
an average of 50 turns were given per core of the primary and
around 20 turns for each calibration coil. For the secondary
winding the number of turns was estimated at 30.

B. Electronics

The second harmonic control and measurement electronics
that has been designed are divided into two blocks. On the one
hand, the elements responsible for the generation of the
excitation signal of the sensor and on the other hand the
devices responsible for the detection, measurement and storage
of the voltage in the secondary. The design is based on a lock-
in amplifier implemented with a full-wave rectifier as will be
explained below. The general scheme can be seen in figure 1.

The element that controls the circuit is a microcontroller
configured in slave mode with a serial connection of type SPI
through which the signal generation devices and the reading
ADC of the second harmonic are controlled.

Loading information in the registers of the two oscillators,
two signals are generated. One will be the excitation of
the sensor and the other will be the reference for the lock-in.
The frequency, phase and shape of the signal are controlled
in the oscillator of the sensor excitation signal. The amplitude
of the signal is controlled by loading the DAC registers.
In the last step prior to entering the sensor head, the signal is

Fig. 1. System block diagram.

amplified by connecting a power amplifier. Both the generator
of the magnetic sensor signal and the generator of the reference
signal are connected to a 1MHz clock that synchronizes them.

The sensor output (secondary) is connected to a variable
gain amplifier and the output to a full wave rectifier imple-
mented by means of a demodulator and an active low pass
filter with cutoff frequency below 5KHz. This filter is formed
by a filter of 2nd order and another of 1st order.

The last element of the chain is formed by a 12-bit digital
analog converter that sends the conversion data to the micro-
controller through the SPI connection.

A calibration of field compensation system is also con-
nected, and it is composed of a coil controlled by a comparison
system implemented in the micro-sensor itself and a digital-
analog converter that controls a current regulation system by
means of which it can be connected to the sensor head. It can
compensate the level of voltage that appears on the secondary
sensor and that is a consequence of Earth’s magnetic field and
other elements of the sensor’s environment.

C. Operation Mode

The system works by means of a signal loop. That is,
an excitation signal is generated that enters the primary of
the sensor. After this phase the calibration is carried out to
make sure that there is no voltage in the secondary that can
vary the actual magnetic field measurement value. Once the
calibration process is finished, object detection is started using
the algorithm shown in Figure 2.

Sensors are constantly measuring. To do that a loop like
showed in Figure 2 is executed. The process to obtain a
measure starts with a change in the phase of the reference
signal which is compared to the signal received at the magnetic
sensor. Factors related to the physical characteristics of the
channel through which magnetic field wave travels, affect only
the phase of the signal received and its amplitude. We know the
attenuation coefficient of the channel [26] and because
the measurement system is based on a lock-in amplifier
(Figure 1), we can eliminate the variations in the phase of the
signal due to wave propagation. Then in each loop execution,
the information obtained by the sensors is adjusted applying
the attenuation coefficient and calculating the real phase of the
signal, varying the phase of the signal reference, until the
voltage given by the measurement system will be maximum.
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Fig. 2. Algorithm implemented in the microcontroller for the detection and
measurement of the second harmonic.

Fig. 3. Example of data representation using AMPERES.

Because of that the voltage given by the measure system is
only related to the variation of magnetic field generated by the
object we want to detect and characterize.

IV. SIMULATIONS

A series of simulations have been carried out to obtain data
about the magnetic field that would allow an algorithm to be
created to determine the size of the vessel and its approximate
trajectory.

The simulations have been done with AMPERES [24] soft-
ware. In this program Maxwell’s equations for the magnetic
field are solved by meshing the surfaces that are to be studied.
Four iron-shaped ferromagnetic objects of dimensions 4m ×
2m, 8m × 4m, 20m × 10m and 40m × 20m have been
simulated (represented in figure 3 as the blak square). These
dimensions have been chosen because they are considered
the most representative of the actual boat sizes. It has been
simulated at different depths of the seabed: 7’5m, 10m, 20m,
and 30m, as samples that allow to interpolate all the rest of
distances.

The obtained results are matrices of around 60000 rows
with 4 columns where the 3 spatial coordinates (represented
in meters) and the data of magnetic field in that point,
are represented. In figure 3 we show an example of how

simulations look like. This figure is a representation of the
value of magnetic field B in each point which coordinates are
registered in the matrix mentioned before.

Once the results were obtained, they were processed using
two different methods. On the one hand, there is a mathemat-
ical analysis based on the equation that governs the behavior
of a magnetic field in the presence of an object and the and
on the other hand, a second method uses a neural network to
develop an algorithm that directly uses the data obtained from
the simulations.

A. Mathematical Analysis

This method of analysis is based on the equation that defines
the influence of an object on the magnetic field at a point.

The value of the B field in a position r (which coordinates
are: x . y and z), is obtained by calculating the rotational of
the magnetic potential vector (A) that is defined as shown in
equation 1.1.

A (x, y, z) = μ0

4π

�
V0

∇� × M

|r − r �| dv � + μ0

4π

�
S0

M × n

|r − r �|da� (1.1)

V0 is the total volume of studied body and S0 is its surface.
This equations shows that A only depends on volume of body
and its surface.

Once obtained A and doing the necessaries calculations,
the rotational is calculated as can be seen in equation 1.2.

B(r) = ∇ × A = μ0

4π

�
V0

∇ ×
�

M × (r − r �)
|r − r �|3

�
dv � (1.2)

Applying the properties of the divergence, 1.2 can be written
as two terms.

B(r) = BI (r) + BI I (r) (1.3)

The first term is described in equation 1.4.

BI (r) = μ0

4π

�
V0

M
�
r �� 4πδ(r − r �)dv � (1.4)

The calculation of this integral will result in the total field
that is seen from the position r due to the vector M in
the position r � (object position), or, in other words, the total
magnetization of the body whose effect in the magnetic field
is to be studied:

BI (r) = μ0 M(r) (1.5)

The second term can be written as seen in equation 1.6.

BI I (r) = −μ0∇ 1

4π

�
V0

M
�
r �� · (r − r �)

|r − r �|3 dv � (1.6)

Knowing that ϕ∗ is a scalar field that solves the magnetic
potential due to the magnetic material, as can be seen in
equation 1.7.

ϕ∗ (r) = 1

4π

�
V0

M
�
r �� · (r − r �)

|r − r �|3 dv � (1.7)

1.7 can be rewritten as in 1.8.

ϕ∗ (r) = 1

4π

�
S0

M · n

|r − r �|da� − 1

4π

�
V0

∇� · M

|r − r �|dv � (1.8)
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Fig. 4. Example of table where it is represented the maximum field variation
for each distance, for a concrete object size.

And the values:
ρM

�
r �� ≡ −∇�M

�
r �� ; σM

�
r �� ≡ M

�
r �� · n

Are defined as the magnetic pole density ρM and the surface
density of the magnetic pole intensity σM respectively.

The total magnetic field at a point r defined by its coordi-
nates x , y and z as can be seen in 1.9.

B (r) = μ0

4π

�
V0

ρM
(r − r �)
|r − r �|3 dv �

+ μ0

4π

�
S0

σM
(r − r �)
|r − r �|3 da� + μ0 M(r) (1.9)

M is a function defined around x, y and z and that will
define the way in which the magnetization is distributed in a
material.

The fact that M is a function involves talking about a
magnetic pole density and a surface density, such as the
divergence or evolution of the function in each of the axes,
and the effective value of that function on the surface of the
material.

In 1.9, the dependence of B with distance can also be
observed. The magnetic field decreases with distance in a cubic
factor. At close range the first two terms acquire relevance.
This causes that when the object is near to the point where
the field is being measured, it is possible to differentiate better
between the effect produced by the surface distribution and the
volumetric distribution.

This dependence on B is also interpreted as an effect
produced by an object whose size can be compared with
distance. Then the analysis must be done from the perspective
of the size of the body comparing it with the distance to the
point of measurement.

V. PROBLEM SOLUTION AND ANALYSIS OF THE RESULTS

Non-linear least squares approximation
The variation behavior of magnetic field B due to the

presence of an object place closed to the measuring point,
is represented by the maximum of this variation obtained in
each of the simulations. In this way we can establish a total
of 4 tables with values (for each simulated object size) formed
by 4 pairs of points: distance r , maximum field variation �B
[figure 4].

The data for the 4 tables taken from the 4 simulated object
sizes, is not enough to do an in-depth study of the magnetic
field behavior and its dependence on the size of the object,
which causes the field variations. In order to get additional
information about this dependency, we have to interpolate the

TABLE I

PARAMETER VALUES OF VECTOR β FOR EACH OBJECT SIZE

Fig. 5. Representation of magnetic field B and distance r between object
and measuring point for every object size simulated.

information from these pairs of values (r , �B) by analyzing
the trend of each variation.

The procedure we used was interpolate using a surrogate
function like a polynomial, using non-linear least squares
approximation, which minimizes the error margin of each
sample. The approximation with minimal error is 2nd degree
power function. This type of function has the mathematical
definition showed in equation 1.10.

�B (r, a, b, c) = arb + c (1.10)

where vector β is formed by parameters a, b and c, and r
is the distance. Table I shows the parameter values for each
simulated object size.

Identification of vessels and their position in the network
of nodes.

Taking the value of a, b and c parameters, we calculated the
variation of magnetic field B for each distance r and object
size m. See equation 1.11.

�B = fθ (r, m) (1.11)

where θ represents the 2nd degree power function used to
approximate the trend of the variation of magnetic field B .

To simplify the calculations we will only use distances
between 7’5 m (minimum distance in simulations) and 40 m
(maximum distance taking into account the distance between
nodes).

Figure 5 shows that there is no an univocal relation between
the group of image values �B and the group of source values
(r, m).

To solve this problem we will use a method based on the
correlated information given by a group of sensors.

When the sensors are deployed on the seabed and are
included within the network, they execute an algorithm that
allows them to know the distance they are from the nodes
next to them [18]. These distances are established between
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20 and 25 meters maximum. In groups of three sensors
one of them is identified as the origin of coordinates and
together with the other two form a triangle. Because we are
using an EM communication system [26], once deployed each
node, the procedure to identify the vessel (size) and give an
approximately value of position where it is located, starts.

If we have a measure of the variation of magnetic field B
(�Bi) for a determined object size m∗ obtained by sensor i ,
equation 1.11 can be particularized to:

�Bi = fθ (ri , m∗) (1.12)

We can observed that equation 1.12 represents a curve as
the intersection between fθ (ri , m∗) and a horizontal plane that
has a value equal to �Bi . Given �Bi and a know value of m∗,
and using equation 1.13 we can calculate the distance between
the object and sensor i .

rm = f −1
θ

�
�Bi , m∗� (1.13)

However, as in practice we do not know m∗
there could be a set of candidates (rm,m) the fulfills
(equation 1.13).

On the other hand, if we have a set of sensors, the localiza-
tion problem is defined by a set of equations. (Equation 1.14).

�Bi = fθ
�
ri , m∗� ∀i
(1, M) (1.14)

Instead of using this notation (equation 1.14) we will iden-
tify the position of each sensor with coordinates zi = (xi ,yi ),
and thus ρ(x,y) will be the geometric place that meets the
mathematical condition (equation 1.15):

�zi − ρ�1 = (xi − x)2 + (yi − y)2 = ri (1.15)

Which is the equation describing a circumference. However,
this equation has implicitly the unknown m∗, due to the
fact that it couldn’t be directly applied. To understand more
clearly the optimization process we will suppose that there
are 3 nodes. Using this architecture, the equations to verify
are (equation 1.16):

�zi − ρ�1 = (xi − x)2 + (yi − y)2 =
�

f −1
θ

�
�Bi , m∗��2

(1.16)

If we solve a set of systems formed by the pairing of
previous equations (equations 1.17):

Sensors 1 and 2:⎧⎪⎨
⎪⎩

(x1 − x)2 + (y1 − y)2 =
�

f −1
θ

�
�B1, m∗��2

(x2 − x)2 + (y2 − y)2 =
�

f −1
θ

�
�B2, m∗��2

→ 2 solutions



α12 = (x12, y12)

ρ∗ = (x∗, y∗)
Sensors 1 and 3:⎧⎪⎨

⎪⎩
(x1 − x)2 + (y1 − y)2 =

�
f −1
θ

�
�B1, m∗��2

(x3 − x)2 + (y3 − y)2 =
�

f −1
θ

�
�B3, m∗��2

→ 2 solutions



α13 = (x13, y13)

ρ∗ = (x∗, y∗)

Fig. 6. Resolution of optimization process.The process has finished and a
result of m∗ and ri is achieved because we have obtained ρ∗.

Sensors 2 and 3 :⎧⎪⎨
⎪⎩

(x2 − x)2 + (y2 − y)2 =
�

f −1
θ

�
�B2, m∗��2

(x3 − x)2 + (y3 − y)2 =
�

f −1
θ

�
�B3, m∗��2

→ 2 solutions



α23 = (x23, y23)

ρ∗ = (x∗, y∗)
(1.17)

Notice that for each system we can obtain two solutions.
One of these is inside the triangle connecting the positions
of the sensors, and, the other solution, outside this triangle.
Under the hypothesis that the �B measurements are correct
and the value of m∗ is known, the solutions inside the triangle
have to converge at a single point and this is, then the solution
to the problem. It is showed in figure 6.

However in practice, we can not follow this approach
because, precisely the value of m∗ is unknown. If we select a
random value of m and we repeat the process we will obtain
(equations 1.18):

Sensors 1 and 2:⎧⎪⎨
⎪⎩

(x1 − x)2 + (y1 − y)2 =
�

f −1
θ

�
�B1, m∗��2

(x2 − x)2 + (y2 − y)2 =
�

f −1
θ

�
�B2, m∗��2

→ 2 solutions



α12 = (x12, y12)

β12 = (x �
12, y �

12)

Sensors 1 and 3:⎧⎪⎨
⎪⎩

(x1 − x)2 + (y1 − y)2 =
�

f −1
θ

�
�B1, m∗��2

(x3 − x)2 + (y3 − y)2 =
�

f −1
θ

�
�B3, m∗��2

→ 2 solutions



α13 = (x13, y13)

β13 = (x �
13, y �

13)

Sensors 2 and 3:⎧⎪⎨
⎪⎩

(x2 − x)2 + (y2 − y)2 =
�

f −1
θ

�
�B2, m∗��2

(x3 − x)2 + (y3 − y)2 =
�

f −1
θ

�
�B3, m∗��2

→ 2 solutions



α23 = (x23, y23)

β23 = (x �
23, y �

23)
(1.18)

Figure 7 represents this other situation:
We are still referring to solutions outside the triangle using

the same notation as in first situation. We observed quite
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Fig. 7. Representation of solutions obtained with equations 1.18.

a difference situation in terms of solutions inside the trian-
gle, because each system of equations gives different points
(named using βi j )

If the selected value of m is quite different from m∗, βi j

points will be far from each other. But if m ≈ m∗, the distance
between these points decreases. Because of this an algorithm
to find the right solution can be proposed. We must consider
certain details:

1- At the moment of starting the algorithm we must find
the smallest value of m0 (within the range of accuracy
of the measurement systems) to achieve two solutions
(αi j , βi j ) for each system of equations.

2- It is not possible to apply a gradient approach technic
because we do not have the analytic expressions: rm =
f −1
θ (�Bi,m) consecuently we are going to use a grid of

points: mk = m0 + k�m selecting �m properly.
3- Cost function will minimize the distances between

points βi j :

J (m) =
N−1�
i=1

N�
j=i+1

��βi j
��2

This is a convex function, having the minimum value at
J (m∗) ≤ J (m) ∀m > 0.

4.- The final result will be obtained when the increment
of cost function between consecutive interactions keeps
below the threshold value ε.

Algorithm explanation and obtained results.
Algorithm is described as follows:
Initialize m0,�m, ε
m = m0, Jre f = 0
While not finish
m = m + �m

Find :

⎧⎪⎨
⎪⎩

(xi − x)2 + (yi − y)2 =
�

f −1
θ

�
�Bi , m∗��2

(x j − x)2 + �
y j − y

�2 =
�

f −1
θ

�
�B j , m∗��2

→ βi j i = 0, . . . , N − 1. j = i + 1, . . . , N

Calculate J (m) = �N−1
i=1

�N
j=i+1

��βi j
��2

if
��Jre f − J (m)

�� < ε then m∗ = m; break while
else Jre f = J (m)
end if
end while
After initializing values m0, �m and ε, the algorithm

establishes the loop start with m = m0 and Jre f =0. In each
loop execution the value of m is increased in �m. After

Fig. 8. Nomalizated results of J (m) for an object size of 14 m2.

Fig. 9. Representation of the convergence o βi j solutions for an object size
of 14m2.

initialization three systems of equation are solved (one for each
pair of sensors) and two solutions are obtained: αi j and βi j that
are the solution outside and inside the triangle formed joining
sensor positions, respectively. The next step is to solve the cost
function using interior points. The magnitude obtained J (m)
can be compared with reference magnitude Jre f and, if the cost
function solution J (m) is below threshold ε, the final solution
is m∗ and the algorithm is over, if not, reference magnitude
Jre f takes the value J (m) and the loop starts its execution
again.

Figures 8 and 10 show curves obtained from the previous
algorithm. The first curve represents the value of J (m) for m
= 14 m2, the other one represents also the value of J (m) for
a new value of m = 60m2. Figures 9 and 11 show how points
βi j converge to a single points that is, then, the solution of
the geometric problem.

Although theoretically appealing, this process requires some
interpolation and optimization process that have been hand-
crafted. Indeed, it is not easy how to incorporate a more
involved algorithm not only to locate the vessel but to include
a tracking perspective. Deep Neural Networks in next section
will provide a very natural solution to these demands and
shows very satisfactory performance.

A. Location Using Deep Neural Networks

1) Problem Description: Assume that we have the magnetic
field measures B(xt , yt , zt , xs, ys , zs , m1, m2), where x, y and
z are the coordinates of the target (i.e., the ship) and the sensor,
using subscripts t and s respectively. A question that arises
is whether it is possible to locate the target by only having
the field measured by a set of sensors, as well as the sensor
coordinates.

This problem is known as state estimation [27]. In this
problem, there is a state vector x, which is unknown and needs
to be estimated using a vector of observations o related to
the state following a certain probability distribution function
P(x|o). If P(x|o) is known, the state can be estimated using
Bayesian filtering [28]. If the function P(x|o) is unknown, it is
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Fig. 10. Nomalizated results of J (m) for an object size of 60 m2.

Fig. 11. Representation of the convergence o βi j solutions for an object size
of 60m2.

Fig. 12. DNN structure used to locate. We use a three layer feedforward
network, where tanh denotes hyperbolic tangent activation functions and LU
stands for linear activation units.

possible to learn it by using an approach based on Deep Neural
Networks (DNNs), such as [29] or [30]. DNNs are known to
be universal function approximators [31] and hence, if they
are chosen and trained adequately, they can approximate an
arbitrary function.

In our case, we use a DNN to estimate the position
of the target (xt , yt , zt ) and its dimensions (m1, m2). As
input to our DNN, we use a transformation L B(Sm) of
the magnetic field measures B(Sm) given by a subset of m
sensors Sm , where L B (Sm) = sign (B(Sm)) log |B(Sm)|. The
transformation allows us to better capture the relation between
distance and field, and also, preserve the sign information.
Note that L B (Sm) is a vector which contains m magnetic
field measurements. The DNN output vector is a 5-vector
(xr , yr , zr , m1, m2), where the subscript r indicates coordi-
nates relatives to the first sensor of the Sm set.

The structure of the DNN we use can be observed
in Figure 12. Note that we make use of a simpler DNN
structure than the ones used in [29] or [30]: instead of using
Recurrent Neural Networks, we use a three feedforward layer
DNN. Yet, our DNN shows to be enough for our purposes,
as next section shows.

2) Simulation Results: We train our DNN using the B(Sm)
computer generated values. Namely, we have the B(Sm) mea-
sures on a grid of 6328(xs, ys) points for xs ∈ [−100, 100],
ys ∈ [−50, 50]. We have a grid of measures for each of
the 16 possible combinations of zs = {7.5, 10, 20, 30} and

Fig. 13. Example of training results for the case m = 9. We plot the
mean values on the training set (blue) and validation set (red) and the
shadowed region contains the maximum and minimum values obtained during
the 30 different training processes. We observe how the MSE, the loss to
minimize during training, decreases with the number of epochs. The same
happens with the MAE. We note that there is no overfitting: MAE and MSE
are very similar on both training and validation sets.

Fig. 14. MAE results as a function of m. We plot the mean final values of
MAE on the training set. The shadowed region contains the maximum and
minimum values obtained during the 30 different training processes. Note how
the average value and the spread decrease as m increases.

(m1, m2) = {(2, 1), (4, 2), (8, 4), (20, 10)}. Note that x, y, z
and m units are meters.

In order to show that our DNN generalizes, we train
it on different Sm sets. Prior to each training procedure,
we randomly choose m sensors from the grid, with the only
constrain that their distances are smaller than 15 meters,
since the communication range of the sensors is 20 meters.
Then, we train the network using 911232 training vectors
and validate using 101248 different vectors, using 10 epochs
over the whole training database and using Adam as optimizer
[27] with parameters α = 0.001, β1 = 0.9, β2 = 0.999 and

 = 10−8. The loss function we use is the mean squared error
(MSE) and we also obtain the mean absolute error (MAE).

Each training procedure described above is repeated 30
times, in order to use 30 different Sm vectors. We train using
m = {3, 5, 7, 9} sensors, in order to observe how the number
of sensors affect the DNN results. The results can be observed
in Figures 13 and 14. In Figure 14 we plot the MSE and MAE
evolution during the training process for the case m = 9. Note
how there is improvement with the number of epochs and how
there is no overfitting, since the validation MSE and MAE are
very similar to the training ones. Similar results (with different
error values) are obtained for the rest of m values.

Note that each time the DNN is trained, the sensor set
Sm changes. This means that the θ parameters of the DNN
are trained specifically for each concrete sensor set. In other
words, we train the DNN knowing the number and position
of the sensors. In a setup where the sensor positions are not
known before being deployed, this means that we require the
sensors to be located after deployment and then, training the
DNN.

In Figure 14, we plot the final MAE values obtained in
the training set as a function of m. Note how the mean and
extreme values of MAE decrease as m increases. This was to
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Fig. 15. Example of trajectories predicted using the trained DNN when
m = 9, zt = 7.5, m1 = 2, m2 = 1. Blue line is the actual target trajectory, and
the red line is the trajectory predicted by the DNN. The MAE for the (xt , yt )
values is 1.19 meters for the first trajectory and 0.99 meters for the second.

be expected: the more information we have, the most accurate
our prediction will be. Also, observe how the MAE is around 2
meters for m = {7, 9}. This means that the mean absolute error
between the predicted position of the target and its dimensions,
and the actual position and dimensions, is in the order of a
couple of meters per dimension. This result means that the
prediction given by our DNN is quite good.

In order to observe better what the DNN predicts, we plot
the prediction results for two different example trajectories
in Figure 15. There, we observe that the predictions given
by the DNN proposed are quite good, predicting with a low
absolute error the position of the target.

Finally, we remark that a higher accuracy could be obtained
in the prediction of the trajectory by using tools for trajectory
estimation that take into account information about the speed
and acceleration (α−β −γ filter, see [27]), information about
the probability distribution function of the trajectory (Kalman
filter, see [27]), or even using Neural Networks to learn
this (as in [29]). Thus, the results obtained could be further
improved in concrete scenarios where more information about
the trajectory is known.

VI. CONCLUSION

In this work we have proposed a new system for the
identification, surveillance and monitoring of boats of medium
size in areas of shallow water. The main objective is to
estimate the size of the object and the followed trajectory as
accurate as possible. To achieve this, a network of underwater
nodes has been designed with a series of magnetic sensors.

In this work, a description is made of the electronics that
handle the magnetic sensors that are fluxgate type. Our final
set-up that it is quite simple and cheap, which allows a large
number of nodes to be put into operation, which makes it
possible to create a network with much better resolution and
much more extensive.

To justify the use of magnetic sensors, a series of simu-
lations have been carried out using software specialized in
magnetic simulations. The AMPERES program has provided
important information about the detected field values for
various object sizes and several distances. The processing of
the obtained data has served to design an algorithm based on
triangulation of nodes to perform for the identification and
monitoring of the vessels.

However, this algorithm offers information that is not very
accurate and in some circumstances, showing some ambigui-
ties. Therefore we present the optimal solution for the problem

based on a neural network with full capability to approximate
the modeled mapping between the magnetic model and the
classification and estimator results. Its application, on the
processed data of the simulations allows to know with higher
accuracy both the size of the object and its trajectory, with a
margin of error very small.

In the future we will try to corroborate these results with
real measurements.
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