Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/77790
DC FieldValueLanguage
dc.contributor.authorPerez, Marinaen_US
dc.contributor.authorParras, Juanen_US
dc.contributor.authorZazo, Santiagoen_US
dc.contributor.authorPérez Álvarez, Iván Alejandroen_US
dc.contributor.authorSanz Lluch, María del Maren_US
dc.date.accessioned2021-02-19T09:31:52Z-
dc.date.available2021-02-19T09:31:52Z-
dc.date.issued2022en_US
dc.identifier.issn1524-9050en_US
dc.identifier.urihttp://hdl.handle.net/10553/77790-
dc.description.abstractSafety in coastal areas such as beaches, ports, pontoons, etc., is a current problem with a difficult solution and on which many organizations are putting efforts in terms of technological innovation. In this work the design of a possible solution based on magnetic sensors is presented. First, a study has been made of the type of sensors that best suit the application based on parameters such as sensitivity, the allowed bandwidth of excitation, price or physical construction. Then the system of excitation of the sensors and signal measurement is presented. To justify the design, a series of simulations of magnetic field variations have been carried out in the presence of large objects of conductive material, in the vicinity of the measuring points. With these data a mathematical model has been established that allows the identification of the dimensions and position of the object through triangulation and knowing only the data of the magnetic field. It was found that although this method seems quite effective, it has a significant error, so another method based on neural networks was developed also using data from the simulations. This method seems to yield much better and more reliable resultsen_US
dc.languageengen_US
dc.relationControlando Las Redes de Comunicaciones Electromagneticas Submarinas Mediante Despliegues Autoconfigurables. Subproyecto UPM.en_US
dc.relation.ispartofIEEE Transactions on Intelligent Transportation Systemsen_US
dc.sourceIEEE Transactions on Intelligent Transportation Systems [ISSN 1524-9050], v. 23(4), p. 3472 - 3481en_US
dc.subject3308 Ingeniería y tecnología del medio ambienteen_US
dc.subject.otherMagnetic sensorsen_US
dc.subject.otherFluxgateen_US
dc.subject.otherMagnetic simulationsen_US
dc.subject.otherVesselsen_US
dc.subject.otherDeep learningen_US
dc.subject.otherDeep neural networksen_US
dc.subject.otherPattern recognitionen_US
dc.titleUsing a Deep Learning Algorithm to Improve the Results Obtained in the Recognition of Vessels Size and Trajectory Patterns in Shallow Areas Based on Magnetic Field Measurements Using Fluxgate Sensorsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typearticleen_US
dc.identifier.doi10.1109/TITS.2020.3036906en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr2,674
dc.description.jcr8,5
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,8
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IDeTIC: División de Ingeniería de Comunicaciones-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.orcid0000-0001-5990-8409-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNamePérez Álvarez,Iván Alejandro-
Appears in Collections:Artículos
Thumbnail
Adobe PDF (2 MB)
Show simple item record

WEB OF SCIENCETM
Citations

2
checked on Nov 17, 2024

Page view(s)

157
checked on Sep 21, 2024

Download(s)

230
checked on Sep 21, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.