Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/76890
Título: Noise-Driven Anisotropic Diffusion Filtering of MRI
Autores/as: Krissian, Karl 
Aja-Fernández, Santiago
Clasificación UNESCO: 32 Ciencias médicas
3314 Tecnología médica
Palabras clave: Anisotropic Diffusion
LMMSE Filter
Magnetic Resonance Imaging
Rician Distribution
Fecha de publicación: 2009
Publicación seriada: IEEE Transactions on Image Processing 
Resumen: A new filtering method to remove Rician noise from magnetic resonance images is presented. This filter relies on a robust estimation of the standard deviation of the noise and combines local linear minimum mean square error filters and partial differential equations for MRI, as the speckle reducing anisotropic diffusion did for ultrasound images. The parameters of the filter are automatically chosen from the estimated noise. This property improves the convergence rate of the diffusion while preserving contours, leading to more robust and intuitive filtering. The partial derivative equation of the filter is extended to a new matrix diffusion filter which allows a coherent diffusion based on the local structure of the image and on the corresponding oriented local standard deviations. This new filter combines volumetric, planar, and linear components of the local image structure. The numerical scheme is explained and visual and quantitative results on simulated and real data sets are presented. In the experiments, the new filter leads to the best results.
URI: http://hdl.handle.net/10553/76890
ISSN: 1057-7149
DOI: 10.1109/TIP.2009.2025553
Fuente: Ieee Transactions On Image Processing [ISSN 1057-7149], v. 18 (10), p. 2265-2274, (Octubre 2009)
Colección:Artículos
miniatura
Adobe PDF (5,03 MB)
Vista completa

Citas SCOPUSTM   

186
actualizado el 22-dic-2024

Citas de WEB OF SCIENCETM
Citations

160
actualizado el 22-dic-2024

Visitas

133
actualizado el 28-sep-2024

Descargas

396
actualizado el 28-sep-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.