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Noise-Driven Anisotropic Diffusion Filtering of MRI
Karl Krissian and Santiago Aja-Fernández

Abstract—A new filtering method to remove Rician noise from
magnetic resonance images is presented. This filter relies on a ro-
bust estimation of the standard deviation of the noise and combines
local linear minimum mean square error filters and partial differ-
ential equations for MRI, as the speckle reducing anisotropic dif-
fusion did for ultrasound images. The parameters of the filter are
automatically chosen from the estimated noise. This property im-
proves the convergence rate of the diffusion while preserving con-
tours, leading to more robust and intuitive filtering. The partial
derivative equation of the filter is extended to a new matrix dif-
fusion filter which allows a coherent diffusion based on the local
structure of the image and on the corresponding oriented local
standard deviations. This new filter combines volumetric, planar,
and linear components of the local image structure. The numerical
scheme is explained and visual and quantitative results on simu-
lated and real data sets are presented. In the experiments, the new
filter leads to the best results.

Index Terms—Anisotropic diffusion, LMMSE filter, magnetic
resonance imaging, Rician distribution.

I. INTRODUCTION

M AGNETIC resonance imaging (MRI) can be divided
into two regimes: relatively high signal-to-noise ratio

(SNR) and high resolution with low SNR imaging. There is a
tradeoff between SNR, spatial resolution, and acquisition time.
Obtaining higher resolution images with a high SNR requires
additional acquisition time which is usually limited by parame-
ters such as the patient comfort or by physiological constraints.
Efficient methods to reduce the noise are still needed especially
in applications requiring a high resolution.

Several filtering methods to improve SNR in MRI have been
proposed in literature. The first attempts to estimate the magni-
tude MR image from a noisy image are that due to Henkelman
[1] and the conventional approach (CA) proposed by McGibney
et al. [2]. Sijbers et al. [3], [4] estimate the Rician noise level
and perform signal reconstruction using a maximum likelihood
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approach. Expectation-maximization formulations with Rician
noise assumptions have been used in SAR imaging [5] and
may be also applied in MRI. Wavelet-based methods for noise
removal have also been considered, as Nowak’s [6]—in which
the authors assume an underlying Rician model—or the one due
to Pižurica et al. [7]. Other techniques involve total variation
schemes [8], Partial Differential Equation [9], Markov Random
Fields [10] or nonparametric neighborhood statistics techniques
like nonlocal means [11], [12] and unbiased NLM [13]–[15]
algorithms. Basu et al. [16] use a Perona-Malik-like smoothing
filter combined with a local Rician data attachment term (effec-
tively trying to remove the intensity bias locally), assuming a
known noise level for the Rician noise model. Recently, Koay
and Basser in [17] developed a correction scheme to analyti-
cally estimate the signal, Martin-Fernandez et al. [18] propose
an anisotropic Wiener-filter approach and Aja-Fernández et al.
[19]–[21] proposed a Linear Minimum Mean Square Error
(LMMSE) scheme assuming an underlying Rician model.

Alternatively, in ultrasound imaging, Yu and Acton [22] pro-
posed a filter to reduce the speckle, called Speckle Reducing
Anisotropic Diffusion or SRAD. This approach combines the
standard Perona and Malik anisotropic diffusion (AD) scheme
[23] with speckle reducing filters based on the image local sta-
tistics [24]. Several extensions and improvements have been
studied, among them Aja-Fernández et al. [25] showed the im-
portance of an accurate noise estimation and the improvement
obtained by using Kuan’s filter [26], and Krissian et al. [27]
extended the filter to a matrix diffusion filter and proposed a
semi-implicit numerical scheme which improves its numerical
stability.

In this paper, we propose an extension of the SRAD ideas
to reduce Rician-distributed noise present in MRI. Since this
filter is highly sensitive to the accuracy of the estimated noise
standard deviation [25], we use a robust technique to estimate
this parameter based on the mode of the local variance of the
image intensity. Furthermore, we introduce a new matrix diffu-
sion extension of the scalar partial differential equation (PDE),
allowing a better smoothing close to the borders of the different
tissues. This extension is more natural than the one introduced
in [27] since it takes into account local statistics within neigh-
borhoods of different dimensions: volumetric for the standard
scalar diffusion, planar and linear, allowing a better smoothing
and preservation of borders and linear structures.

The paper is organized as follows. Section II presents the
background in filtering and estimation. Section III presents the
new anisotropic filter, in its scalar and matrix form. Results for
synthetic and real data are shown in Section IV. Conclusions are
presented in Section V.
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II. BACKGROUND

A. LMMSE Estimator for the Rician Model

Noise in magnitude Magnetic Resonance (MR) images is
usually modeled following a Rician distribution, due to the
existence of uncorrelated Gaussian noise with zero mean and
the same variance in both the real and imaginary parts of
the complex k-space data [28]. In the image background, where
the SNR is zero due to the lack of water-proton density in the
air, the Rician PDF simplifies to a Rayleigh distribution.

The filtering method proposed in this paper is based on the
Linear Minimum Mean Square Error (LMMSE) estimator for
the Rician model, proposed in [19] and [20] as

(1)

where is the magnitude value of the N-dimensional point
in an MR volume and is the original signal level if no

noise is present. In order to achieve a closed-form expression,
is used instead of . is defined as [19]

(2)

The operator denotes the sample estimator of the expectation,
that may be defined as

(3)

where is a neighborhood centered at the pixel and
is the size of the neighborhood.

Note that the parameter must be properly estimated. To
this end, many methods has been previously reported. They are
mainly based on the features of the Rayleigh background [19],
[29]–[31], as, for instance

(4)

If the background assumption does not hold, the estimation may
be performed using the local variance [19]

(5)

where is the (unbiased) local sample variance of
. Note that this last estimator is defined only to be used in

Rician regions of the image.

B. Anisotropic Diffusion Schemes Based on Local Statistics

Based on the pioneer work of Perona and Malik [23], Yu and
Acton [22] have proposed a new filter adapted to the statistics
of the speckle in Ultrasound images. The main idea behind the
SRAD filter is to transform a typical LMMSE estimator of the
form

(6)

where is an estimator of the original signal , is the observed
signal, is a gain function depending on , and is a sample
estimator of ; into a Partial Differential Equation (PDE) of the
form:

(7)

where is a diffusion function de-
pending on the local statistics of the image and on the noise
model. More details about the relation between (6) and (7) can
be found in [22] and [27].

In the typical Perona and Malik’s anisotropic diffusion equa-
tion, the diffusion term is a decreasing function of the
gradient norm of the type

where is a free parameter that has to be manually tuned ac-
cording to intensity gradients generated from both the noise and
the relevant contours of the image. Since the image can contain a
wide range of magnitudes of relevant intensity gradients, tuning
the parameter often ends up being a difficult task.

In this last equation, the diffusion is controlled by the local
statistics in the image, rather than by an additional chosen pa-
rameter. The term in (7) can be rewritten as

to better understand its behavior.
In this case, if the observed local standard deviation is charac-
teristic of the noise ( and ), we are in an homo-
geneous region and apply the heat equation. If not, is closer
to 1, we reduce the filtering and enhance the contours where
reaches a local minimum.

This approach is attractive because it extends the Perona and
Malik filter [23] in a way that obviates the need to choose the
main parameter of this filter: the contrast parameter based on
the gradient norm. Instead, the amount of diffusion applied in a
small neighborhood is based on the local statistics of the image
intensity and on the global statistics of the noise which are es-
timated for the whole image. This filter, the so-called Speckle
Reducing Anisotropic Diffusion (SRAD), also converges faster
because it tries to remove just the amount of noise contained
in the image and this amount is decreasing at each iteration. In
[25], an alternative implementation decoupling the estimation
and the filtering is done, and in [27], an oriented version of the
filter is proposed. We must recall, as it was shown in [25], that
the goodness of the filter is totally related with the capability
of properly estimate the noise parameter related to the assumed
noise model.

III. RICIAN NOISE DRIVEN ANISOTROPIC DIFFUSION

A. Derivation of the Filter

In this section, we propose an anisotropic diffusion filter for
Rician-distributed noise based on the LMMSE filter previously
described and the Speckle Reducing Anisotropic Diffusion
(SRAD) proposed in [22]. We call it Rician Noise Reducing
Anisotropic Diffusion (RNRAD) filter.
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If the original signal is defined by , the
observed signal by , then .
The LMMSE estimator in (1) may be rewritten in the form of
(6) with

(8)

The corresponding PDE is given by (7), and is applied it-
eratively using either an explicit or a semi-implicit numerical
scheme.

At the end of the diffusion process, the output is an
approximation of the original image . The output image
will be

(9)

being the noise parameter in the original image (before
filtering).

This proposed scheme has the advantage of not depending
on the norm of the gradient for the filtering which can vary in
the image, as the AD schemes usually do. In addition, there is a
natural decrease of the diffusion as the estimated standard devi-
ation of the noise decreases. This way, computations converge
without smoothing out interesting features of the image.

B. Matrix Extension

In [27], a matrix extension to the SRAD filter in the context
of ultrasound images is introduced. By combining the approach
of Yu and Acton with a matrix anisotropic diffusion, a nonscalar
component which can perform directional filtering of the image
along the structures is added. This extension to a matrix diffu-
sion takes advantage of the local orientation of the structures in
the image to enforce their coherence along directions of min-
imal intensity change.

In this paper, we propose a new matrix extension of the ini-
tial scalar diffusion equation, which takes better into account
the statistical properties of the local structure in the image, and
improves the overall performance of the filter. As compared to
the matrix extension proposed in [27], we propose here a more
natural extension.

• The local orientation of the structure is computed based on
the structure tensor instead of the local gradient and prin-
cipal curvature directions. Although the orientation based
on the principal curvature directions is a good choice for
tubular structures, it has the disadvantage of not being de-
fined at locations where the gradient is null and leads to a
less continuous representation.

• Instead of choosing the second and third eigenvalues of the
diffusion matrix as the maximal and minimal curvatures,
we propose here to relate them to the local statistics of the
image in the plane and the line defined by their respective
eigenvectors as described later in this section. This choice
constitutes a more natural extension of the scalar diffusion
to a matrix diffusion and can be easily generalized and
applied to a space of any dimension, the 1-D case being
equal to the original scalar diffusion equation.

1) Description of the Local Structure: As mention in pre-
vious works, (7) can written as ,
where the diffusion matrix is a scalar,
and denotes the identity matrix. The eigenvectors of the dif-
fusion matrix can be chosen to describe the local structure or
geometry of the image. From the different techniques to com-
pute them (see comparisons in [32]–[35]), we will choose the
structure tensor [36], for having the advantage of being able to
extract the directions of minimal intensity change even in the
case of low or zero gradients (for example at the center of linear
structures or between two structures of the same intensities).

To describe the structure tensor, different techniques have
been developed. For the sake of simplicity we will use the outer
product of the gradient, smoothed by a Gaussian convolution
[37]

(10)

where is a Gaussian kernel of standard deviation ,
is the gradient of the image obtained by convolution with the
derivatives of a Gaussian kernel of standard deviation . Let
us denote its eigenvalues and its
associated eigenvectors. gives the local orientation of max-
imal intensity variation (which is the gradient orientation in the
limit case ), and gives the local orientation of minimal
intensity variation.

2) New Matrix Formulation: To naturally extend the
RNRAD filter to a matrix diffusion, we design a diffusion
matrix that shares the eigenvectors , of ,
but with eigenvalues related to the level of noise and
defined as

(11)

where as defined in (8) is the
gain coefficient in a local isotropic neighborhood,

is the gain in a local planar
neighborhood defined by the eigenvectors and , and

is the gain in a local linear neigh-
borhood oriented by the eigenvector . The local mean values
are computed as follows, at a voxel position

(12)

(13)

and the local variances are computed using the same sets of
neighborhoods. In all our experiments, we have set the local
isotropic, planar and linear neighborhoods to the following re-
spective sizes: , 5 5, and 7.

Because the difference between the local mean of a voxel and
its intensity can be approximated in 3-D, 2-D, and 1-D, respec-
tively by 1/6, 1/4, and 1/2 of the local Laplacian operator, we
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weighted in (11) each type of diffusion by the corresponding co-
efficient, multiplied by 6 to be homogeneous with the scalar case
that uses as diffusion function. In the basis ,
the diffusion matrix is diagonal and can be written as

(14)

The corresponding diffusion equation can be written as the sum
of three diffusion terms

(15)

where is the projection of the gradient in the plane formed
by and is the projection of the gradient in the di-
rection of . The advantage of this approach is that all the di-
rections will benefit from a progressive filtering which tries to
smooth the image just the amount needed to reduce the esti-
mated level of noise. Also, it takes into account the fact that
all directions should not be treated equivalently when close to
a contour, and in the hypothetical case of a straight circular
cylinder, the filtering applied in the direction of the axis of the
cylinder would be the same as in a homogeneous noisy region,
while the filtering across the boundary will be reduced, leading
to potential enhancement in this direction. Fig. 1 illustrates the
effect of our filter on a synthetic noisy image representing a
cube. The proposed filter is the sum of a scalar, a planar and
a linear filter, each of them oriented in the local directions of
less intensity variation.

C. Numerical scheme

We denote the diffusion coefficient at
time . The PDE can be discretized using an explicit scheme

(16)

where is the neighborhood of the point consisting in the
direct neighbors in each direction (typically 4 neighbors in 2-D
and 6 in 3-D, but diagonal neighbors could be added as proposed
in [9]), is the mean value of the dif-
fusion coefficient between the position and its neighbor pixel

. As in [27], we use a multithreaded version of Jacobi numer-
ical scheme to solve the diffusion PDE. This scheme applied to
(16) is written as

(17)

In practice, it is stable for any time step and the processing
time of one iteration is comparable to the explicit scheme, with
a much better convergence rate.

Fig. 1. Illustration of the effect of combining scalar, planar, and linear filtering
on a noisy synthetic image of a cube object. The voxels of intensity higher than
a threshold are rendered in 3-D, and the cube is cut at the position of the cursor
to see its interior. (a) Initial noisy image, (b) scalar filter, (c) scalar + planar
combination, (d) scalar + planar + linear combination.

The parallel between (6) and (7), based on
suggests using of the value as a con-

stant time step. In our case for 3-D images, we set . We
refer the reader to a previous work [32] for the discretization of
the matrix diffusion equation.

D. Estimation of the Parameters

The proposed filter will remove the noise in the square in-
tensity image by evolving (7) with the parameter . Es-
timates of the parameter and also of the local mean and
standard deviation are, therefore, needed.

1) Estimation of : Parameter is time dependent in
the proposed scheme, and accordingly so will be .
If a discrete numerical scheme is assumed, a value for each it-
eration is considered, i.e. . Note that this value must be
then estimated in each iteration. We must assume that the Ri-
cian model holds once the image is filtered. In [20], it is shown
that for a recursive LMMSE filter the assumption is not far from
reality. There is a slight mismatch with increasing numbers of
iterations, but the Rician assumption is still reasonable. Further-
more, when the SNR gets smaller, the Rician and Gaussian dis-
tribution converges as expected for high SNR values.

Most of the noise estimators for MR are based on the as-
sumption of a background where there is no signal, and, there-
fore, the data follows a Rayleigh distribution. This could be the
case for the image before filtering. However, once the diffusion
process has began, the volume we are considering, say , is
biased with respect to the original image . So, any estima-
tion based on noncentral statistics will also be biased.
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Fig. 2. Region selection for noise estimation. The selected area should be inside
the tissue part of the MR, and no background should be considered. It is not
required for the area to be uniform.

Fig. 3. Three-dimensional region selection for noise estimation. From the
���� ���� ��� original volume a ���� ��� ��� volume is selected.

From the available methods to estimate the noise from mag-
nitude MR data, we have selected the one in (18); the estimation
is done using the variance in a subvolume inside the skull
where there are more tissue regions than background, and, there-
fore, the Rician assumption holds. The estimator will be

(18)

being a segmented region of the volume inside the head,
i.e., a region with signal and no background . This region
may be roughly defined, as shown (for one slice) in Fig. 2, and
(for the whole volume) in Fig. 3. This way, we are assuring
that the background has no effect over the estimation. Another
rough automatic segmentation method on an inner area may be
used; using for instance some thresholding method, as the ones
proposed in [38] and [39].

The election of this estimator is two-folded: 1) the variance
it is not a central moment, and, therefore, it is not affected by
the bias during the process; and 2) according to [40], this esti-
mation is similar to the estimation of the variance of additive
Gaussian noise in images. Thus, although the Rician assump-
tion does not hold after several iterations, we can always ap-
proximate the noise as additive Gaussian. So, if we assume that

the noise distribution tends to Gaussian after the first diffusion
steps, the same noise estimator will still be valid through all
the iterative process. However, one could use an alternative es-
timator from those proposed in literature.

2) Estimation of the Image Local Statistics: The local mean
and the local variance of the observed signal

are computed within a small vicinity of the current position
. In a recent study [25], local statistics in 2-D are computed

using a larger neighborhood than the 4 direct neighbors used
by Yu and Acton, leading to better results and better stability.
This is justified in ultrasound images which are degraded by a
stronger noise.

IV. EXPERIMENTS

A. Synthetic Experiments

To compare the experimental results to a ground truth, syn-
thetic images containing different levels of noise are considered.
Our method is quantitatively evaluated on a simulated structural
MR data. The structural MR volume contains 256 gray levels,
has a size of voxels, and is originally noise-free.
It has been obtained from the BrainWeb database [41]. We cor-
rupt the data with synthetic Rician noise of different values.

The noisy volume is processed using the following techniques
and parameters.

1) The Conventional Approach, denoted CA, by
McGibney et al. [2], using windows and
manually setting the exact value of .

2) The Analytically Exact Solution, proposed by Koay and
Basser in [17], denoted Koay, using windows
for statistics computation.

3) The wavelet domain noise filter for medical imaging pro-
posed by Pižurica et al. in [7]. The best results for this ex-
periment are achieved using .

4) The LMMSE Estimator for Rician Noise proposed by Aja-
Fernández et al. [20], using windows both for
filtering and noise estimation. The noise estimation is per-
formed using (4).

5) A Recursive LMMSE Estimator (RLMMSE) as proposed
in [20] with 8 iteration steps, using windows
both for filtering and noise estimation. Noise estimation
done using (4).

6) Anisotropic Diffusion of Perona and Malik, denoted AD,
where the we use Green’s diffusion function defined as

, with a contrast pa-
rameter based on the gradient norm of , and 30 iter-
ations with a time-step of 0.1.

7) The Nonlocal means algorithm [42], denoted NLM. Re-
cently, a fast version of the algorithm has been proposed
in the context of 3-D medical images [12], we use here
a similar implementation (see [15]) which allows filtering
the whole volume in a reasonable time, with a searching
window size of , and a value of the parameter that
weights the pattern similarity values of 8, we refer to [12]
for a discussion about how to choose this parameter.

8) An Unbiased Nonlocal means algorithm as proposed in
[15], denoted NLCA, for Nonlocal means Conventional
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TABLE I
QUALITY MEASURES: SSIM, QILV, AND MSE FOR THE 3-D VOLUME EXPERIMENTS. THE BEST VALUE OF EACH COLUMN IS HIGHLIGHTED.

THE PROPOSED SCHEMES (RNRAD) SHOW BETTER RESULTS IN TERMS OF NOISE REMOVAL AND EDGE PRESERVATION

Fig. 4. Quality measures: SSIM, QILV, and MSE for the 3-D volume experiments. The proposed scheme (RNRAD) shows better results in terms of noise removal
and edge preservation.

Approach [15]. Other versions of unbiased NL-means al-
gorithms have been proposed in [13] and [14]. We have
used a searching window size of and a parameter (de-
fined in [15]) of value 8.

9) The proposed Rician Noise Reducing Anisotropic Diffu-
sion (RNRAD) filter for MRI, using either the scalar, de-
noted Scalar-RNRAD or SNRAD, or the matrix version,
denoted Oriented-RNRAD or ORNRAD. For both ver-
sions, we use a total diffusion time of , a time-step

and a neighborhood for estimating
the local statistics. For the matrix version, we use Gaussian
kernels with and for computing the
Structure Tensor.

To compare the restoration performance of the different
methods, two quality indexes are used: the Structural Simi-
larity (SSIM) index [43] and the Quality Index based on Local
Variance (QILV) [44]. Both give a measure of the structural
similarity between the ground truth and the estimated images.

Fig. 5. Evolution of the mean square error (left) and the noise standard devia-
tion estimation (right) as function of the equation diffusion time for � � ��.

However, the former is more sensitive to the level of noise in
the image and the latter to any possible blurring of the edges.
Both indexes are bounded; the closer to one, the better the
image. The mean square error (MSE) is also calculated. These
three quality measures are only being applied to those areas of
the original image greater than zero; this way the background
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Fig. 6. Results of different denoising filters on a simulated Brain MR volume corrupted with a Rician noise of standard deviation � � ��. Sagittal (left) and
Axial (right) slices. From left to right and top to bottom: (a) the original image, (b) the noise corrupted image, and the results of (c) the anisotropic diffusion filter,
(d) the wavelet filter, (e) the nonlocal means filter, (f) the nonlocal conventional approach, (g) the analytically exact solution referred to as Koay and Basser’s
filter, (h) the Conventional Approach, (i) the LMMSE filter for Rician noise, (j) the Recursive LMMSE filter, (k) the Scalar Rician Noise Reducing Anisotropic
Diffusion, and (l) the Oriented Rician Noise Reducing Anisotropic Diffusion.
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is not taken into account when evaluating the quality of each
method. The average of ten experiments is considered for each

and each filter.
Results are detailed in Table I and Fig. 4, and depicted in

Fig. 6 corresponding respectively to sagittal and axial cuts of
the volume dataset. Our new algorithm outperforms the other
compared techniques for all three quality assessment measures
and all levels of noise, apart from one case with a noise standard
deviation of 20, where the unbiased nonlocal means algorithm
(NLCA) gives a slightly better value for the MSE measure. The
matrix version gives better results than the scalar one for both
the SSIM and MSE measures, while the scalar version gives
slightly better results for the QILV measure with noise standard
deviations 10, 15, 20, and 25.

This difference can be explained by the additional smoothing
along the edges performed by the matrix version of our algo-
rithm which also introduces a slight blurring. In Table I, we
distinguish and separate biased algorithms: anisotropic diffu-
sion, wavelets and nonlocal means, from nonbiased algorithms.
Among the biased algorithms, we observe a clear advantage
of the NL-means algorithms, which also gives very good vi-
sual results in Fig. 6. However, since the bias is not removed,
it does not reach as good restoration performance as most bias-
free algorithms. Among the unbiased algorithms, the unbiased
NL-means algorithms obtain good results in terms of MSE mea-
sure as compared to other existing approaches, but still our new
filter outperforms it in most cases. One reason for the better re-
sults obtained by our filter is that it automatically adapts to the
level of noise present in the image, and it locally adapts to the
orientation of the structures within the image. Fig. 5 shows that
the proposed algorithm is robust with respect to the total dif-
fusion time that is applied during the processing. We observe
that the estimated standard deviation of the noise decreases with
the iterations and gets to values lower than 1, while the Mean
Square Error is strictly decreasing. A total diffusion time of 2
seems to be sufficient to reach almost convergence of the diffu-
sion process.

B. Real Datasets

To further verify the performance of our filtering method, ex-
periments have been carried out on two real datasets.

The first one is a T2 3-D MRI volume, scanned in a 1.5 Tesla
GE Echospeed system.1 The volume is filtered using the
ORNRAD filter. Results are on Fig. 7. We observe a good
reduction of the noise, a preservation of the detailed structures
and a better definition of the interface between different tissues.

The second dataset is a 3-D SPoiled Gradient-Recalled
(SPGR) MR data set of dimension and spatial
resolution mm mm mm. The original
and filtered datasets are depicted in Fig. 8, on both three
orthogonal slices of the whole volume: coronal, sagittal and
axial respectively at left, middle and top positions, and a

1The scanning Sequence used maximum gradient amplitudes of 40 mT/M,
six images with 4 high (750 s/mm ), and two with low (5 s/mm ) diffusion
weighting. The rectangular field of view is 220� 165 mm, the scan matrix 128
� 96 (256� 192 image matrix), with 4 mm slice thickness and 1 mm interslice
distance. Receiver bandwidth �6 kHz. TE (echo time) 70 ms; TR (repetition
time) 80 ms (effective TR 2500 ms). Scan time 60 s/slice.

Fig. 7. Results on a 3-D T2-MR dataset, on three different axial slices.
Left: original image; right: image filtered with the proposed filter.

Fig. 8. Results on a 3-D SPGR dataset. Left: original dataset, right: image
filtered with the proposed ORNRAD filter, top: three orthogonal slices;
bottom: zoom on the sagittal slice.

selected region-of-interest of a sagittal slice. The filter was run
with the following parameters: structure tensor Gaussian kernel
of standard deviations mm and mm, local
statistics computed on a neighborhood, time-step

, and total diffusion time of . The estimated noise
standard deviation on a selected region-of-interest is reduced
from 5 to 0.8. When visually comparing the original and the
filtered images on the region-of-interest, Fig. 8(c) and (d), we
can appreciate the contrast enhancing at the interface between
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gray and white matter tissues and the noise removal within each
tissue area. Small thin structures like vessels, appearing as white
dots, are also well preserved by the algorithm.

V. CONCLUSION

A new filter designed to reduce Rician noise in Magnetic
Resonance Images has been proposed. This filter is adapted
from the Speckle Reducing Anisotropic Diffusion filter recently
proposed in the context of Ultrasound images. It combines a
Linear Minimum Mean Square Error filter applied to Rician
noise distribution and the Perona and Malik’s anisotropic dif-
fusion filter. We have further extended the partial differential
equation to use a diffusion matrix instead of a scalar, allowing a
better reduction of the noise at contour locations. This new ex-
tension, based on the eigenvectors of the structure tensor, com-
bines a smoothing of isotropic, planar and linear local struc-
tures, where each smoothing is weighted according to the cor-
responding LMMSE filter.

The new filter does not require the user to choose a contrast
parameter for the edges of the structures like the standard Perona
and Malik’s filter, but relies instead on the local statistics of
the image: local mean and local variance, and on an estimated
standard deviation of the noise for the underlying noise model.
Therefore, it needs a good estimation of the noise level, and
a correct hypothesis about its statistical distribution. Based on
previous publication, we choose to estimate the noise standard
deviation as the mode of the local standard deviations on a sub-
volume of the image that does not contains background voxels.

A semi-implicit numerical scheme is presented to solve the
PDE, based on the Jacobi scheme that allows easy multithreaded
implementation. As a result of using a LMMSE approach and
estimating the noise level at each iteration, the proposed filter is
very robust to the total diffusion time and converges fast. More-
over, it requires very few parameter tuning since we used the
same set of parameters for all our experiments, except for the
standard deviation of the Gaussian kernel used to compute the
structure tensor which needs to adapt to the voxels dimensions.

Experiments have been carried out on simulated and real
data sets. Quantitative results using three different quality
measures show a better behavior of the proposed scheme when
compared to other state-of-the-art filters for different noise
levels. According to the QILV, the scalar version of the filter
gives slightly better results in edge preservation, while the
matrix version shows a better performance in noise reduction.

A free implementation of the filter is available as part of the
AMILab software.2

Future work includes extending this technique to multi-
channel data, and applying it in the context of Diffusion Tensor
MRI. Another interesting extension to this work would be to
evaluate the improvement of using our filter as a preprocessing
step to other image processing techniques like segmentation
and registration.
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