Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/76890
Campo DC Valoridioma
dc.contributor.authorKrissian, Karlen_US
dc.contributor.authorAja-Fernández, Santiagoen_US
dc.date.accessioned2020-12-21T14:29:58Z-
dc.date.available2020-12-21T14:29:58Z-
dc.date.issued2009en_US
dc.identifier.issn1057-7149en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/76890-
dc.description.abstractA new filtering method to remove Rician noise from magnetic resonance images is presented. This filter relies on a robust estimation of the standard deviation of the noise and combines local linear minimum mean square error filters and partial differential equations for MRI, as the speckle reducing anisotropic diffusion did for ultrasound images. The parameters of the filter are automatically chosen from the estimated noise. This property improves the convergence rate of the diffusion while preserving contours, leading to more robust and intuitive filtering. The partial derivative equation of the filter is extended to a new matrix diffusion filter which allows a coherent diffusion based on the local structure of the image and on the corresponding oriented local standard deviations. This new filter combines volumetric, planar, and linear components of the local image structure. The numerical scheme is explained and visual and quantitative results on simulated and real data sets are presented. In the experiments, the new filter leads to the best results.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Transactions on Image Processingen_US
dc.sourceIeee Transactions On Image Processing [ISSN 1057-7149], v. 18 (10), p. 2265-2274, (Octubre 2009)en_US
dc.subject32 Ciencias médicasen_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherAnisotropic Diffusionen_US
dc.subject.otherLMMSE Filteren_US
dc.subject.otherMagnetic Resonance Imagingen_US
dc.subject.otherRician Distributionen_US
dc.titleNoise-Driven Anisotropic Diffusion Filtering of MRIen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TIP.2009.2025553en_US
dc.identifier.pmid19546041-
dc.identifier.scopus70349604349-
dc.identifier.isi000269715500010-
dc.contributor.authorscopusid6602218913-
dc.contributor.authorscopusid6507904679-
dc.identifier.eissn1941-0042-
dc.description.lastpage2274en_US
dc.identifier.issue10-
dc.description.firstpage2265en_US
dc.relation.volume18en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid1202623-
dc.contributor.daisngid453969-
dc.description.numberofpages10en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Krissian, K-
dc.contributor.wosstandardWOS:Aja-Fernandez, S-
dc.date.coverdateOctubre 2009en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-MEDen_US
dc.description.jcr2,848
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.fullNameKrissian , Karl-
Colección:Artículos
miniatura
Adobe PDF (5,03 MB)
Vista resumida

Citas SCOPUSTM   

186
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

160
actualizado el 15-dic-2024

Visitas

133
actualizado el 28-sep-2024

Descargas

396
actualizado el 28-sep-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.