Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/75513
Campo DC Valoridioma
dc.contributor.authorLorenzo-García, F. D.en_US
dc.contributor.authorNavarro Mesa, J. L.en_US
dc.contributor.authorRavelo-Garcia, A. G.en_US
dc.date.accessioned2020-11-13T10:04:51Z-
dc.date.available2020-11-13T10:04:51Z-
dc.date.issued2007en_US
dc.identifier.isbn978-960-8457-97-3en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/75513-
dc.description.abstractIn a previous paper [8] we have proposed a method to improve the classification between two classes in a new transformed space using the Chernoff similarity measure. The key idea is to estimate a transformation matrix such that the overlap between the pdf associated to the competing classes is minimum thus leading to a minimization of the classification error. Starting from a surrogate cost function we review the previous method from the consideration that in many practical applications the (online) learning examples come in a sample-by-sample manner instead of a batch manner. Then we propose a new formulation of the learning algorithm in online mode and we derive the corresponding formulation. We arrive to iterative formulations of the estimation processes. The classes are modeled by a Gaussian mixture model with a varying number of components and we investigate the new method for several dimensionalities of the transformed subspace. The experiments are carried out over a database of speech with and without pathology and we show that the performance of the online approach compares favorably with respect to the batch mode and outperforms some reference methods.en_US
dc.languageengen_US
dc.sourceProceedings of The 7Th Wseas International Conference On Signal Processing, Computational Geometry And Artificial Vision (Iscgav'-07), p. 41-49, (2007)en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherRecognitionen_US
dc.subject.otherLearning Algorithmen_US
dc.subject.otherChernoff Bounden_US
dc.subject.otherTransformation Matrixen_US
dc.subject.otherCost Functionen_US
dc.subject.otherGaussian Mixture Modelsen_US
dc.titleAn extension of the Chernoff-based transformation matrix estimation method for on-line learning in Bayesian binary hypothesis testsen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference7th WSEAS International Conference on Signal Processing, Computational Geometry and Artificial Visionen_US
dc.identifier.isi000257283500007-
dc.description.lastpage49en_US
dc.description.firstpage41en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.contributor.daisngid8331666-
dc.contributor.daisngid2630721-
dc.contributor.daisngid1986395-
dc.description.numberofpages5en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Lorenzo-Garcia, FD-
dc.contributor.wosstandardWOS:Navarro-Mesa, JL-
dc.contributor.wosstandardWOS:Ravelo-Garcia, AG-
dc.date.coverdate2007en_US
dc.identifier.conferenceidevents120628-
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.event.eventsstartdate24-08-2007-
crisitem.event.eventsenddate26-08-2007-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0003-3860-3424-
crisitem.author.orcid0000-0002-8512-965X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameNavarro Mesa, Juan Luis-
crisitem.author.fullNameRavelo García, Antonio Gabriel-
Colección:Actas de congresos
miniatura
Adobe PDF (343,84 kB)
Vista resumida

Visitas

138
actualizado el 28-dic-2024

Descargas

37
actualizado el 28-dic-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.