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Abstract: - In a previous paper [8] we have proposed a method to improve the classification between two classes 
in a new transformed space using the Chernoff similarity measure. The key idea is to estimate a transformation 
matrix such that the overlap between the pdf associated to the competing classes is minimum thus leading to a 
minimization of the classification error. Starting from a surrogate cost function we review the previous method 
from the consideration that in many practical applications the (online) learning examples come in a sample-by-
sample manner instead of a batch manner. Then we propose a new formulation of the learning algorithm in on-
line mode and we derive the corresponding formulation. We arrive to iterative formulations of the estimation 
processes. The classes are modeled by a Gaussian mixture model with a varying number of components and we 
investigate the new method for several dimensionalities of the transformed subspace. The experiments are 
carried out over a database of speech with and without pathology and we show that the performance of the on-
line approach compares favorably with respect to the batch mode and outperforms some reference methods. 
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1 Introduction 
The problem of discrimination between classes is 
well known and has been studied in several papers. 
The main problem is that the classification scores 
degrade significantly when the classes are highly 
confusable, that is, the corresponding probability 
density functions (pdf) are highly overlapped. Our 
main objective is to tackle this problem in order to 
achieve low confusability in binary hypothesis tests. 
Various discriminative methods have been proposed 
in the literature to deal with the problem of 
confusability. In [2] an average divergence measure 
is used as criterion for finding a transformation 
matrix which maps the original features into a 
subspace with a better discriminative ability. This and 
other approaches [2,3,5] use subspace projections by 
maximizing an appropriately chosen class-
separability criterion. We have previously worked on 
this idea in [6,8] relying on the Chernoff bound as a 
measure of similarity between competing classes in 
binary hypothesis tests where each class is modeled 
by means of Gaussian Mixture Models. The paper 
presented here is an incremental work based on [6,8]. 
We offer a new vision of the learning algorithms in 
terms of the way in which samples are incorporated 
in the learning process. 

The starting concept of our approach to the 
design and estimation of transformation matrices is 
the Chernoff bound. It is, in fact, an upper bound of 
the probability of error. Based on this concept, we 
start by defining a surrogate cost function whose 
maximization let to approach a minimization of the 
classification error. 

On-line and batch learning algorithms are 
used in the estimation process of the transformation 
matrix. In the on-line learning, the whole sample is 
not used in batch at each step of the algorithm, but 
only the latest observation vector xt is used, while in 
batch learning the entire training set is used at every 
step of the iteration to form the expectation. On-line 
learning algorithms are typically more efficient, and 
simple to implement, however common learning 
problems fit more naturally in the batch learning 
setting. Batch learning algorithm is probably the most 
common supervised machine-learning setting and it 
has represented the first algorithm in our 
methodology. This subject will be developed in 
section 2. 

A selected set of Gaussians from each class 
participates in the process and the transformation 
matrix is expected to separate the Gaussians in the 
new subspace. For this purpose we develop an 
iterative method based on the steepest ascent method 
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that aims at finding maximum discrimination 
between classes. Different initializations were studied 
in [10] and here we use one of them based on the 
maximization of the Bhattacharyya distance [5]. This 
subject and other optimization details will be 
developed in section 3. 
Once defined the cost function and the maximization 
method we centre our experiments in pathological 
speech classification (section 4). The vectors in the 
original space are formed by Mel-warped log-
filterbank energies (MFE) features. The main 
objective of our experiments is to study the on-line 
algorithm in terms of the dimensionality in the 
transformed space and compare its performance with 
the batch version. Our reference transformation 
matrix is the one based on the discrete cosine 
transform which is classic in the speech recognition 
literature.  
 

 

2   Chernoff-based cost function and 

the learning algorithms 
The probability of error is a good measure of the 
performance of a decision rule [4]. Let 
qi(x)=Pipi(x)/p(x) be the a posteriori probability of 
class i given a pattern x. Then, the conditional error 
given x, due to the Bayes decision rule is either q1(x)  
or q2(x)  whichever smaller and the Bayes error can 
be estimated through the following expression. 
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where pi(x)=p(x/wi) {i=1,2} and Pi=P(wi) are the 
conditional probability density and the a priori 
probability of the i class, respectively. 
An upper bound of the second integrand in (1) can be 
obtained by stating the fact that min[a,b] ≤ aα b1-α, 
where 0 ≤ α ≤ 1. Then, using this inequality the total 
error can be bounded by 
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This expression is called the Chernoff bound and it 
can also be seen as a measure of similarity between 
two pdf. For example, each pdf may define the 
probability of pertaining to a given class, and 
therefore measures how similar or different the two 
classes are. Obviating the maximization in (2) with 
respect to α and without loss of generality it is 
assumed to be constant hereafter and equal to 1/2 
which results in the well known Bhattacharyya 
distance. The important fact for our purposes is that 

the larger the distance D  is between the two 
distributions, the smaller the probability of 
misclassification between classes. In fact, the 
expression in (2) is often used to obtain an upper 
bound on the probability of misclassification such 
that the bigger the distance the smaller that 
probability [9]. 

The maximization of the Chernoff distance 
has been used in [8] to find a transformation matrix. 
The objective was to obtain an improved 
discrimination capability to reach a minimized 
classification error. 

Taking into account that in practical 
applications the samples to be classified are discrete 
and finite, a more suitable form of expression (2) is as 
follows. In a general supervised training, let 
Υ={(x1,y1),…,(xN,yN)} be a finite set of training 
instances, where each instance xt corresponds to a 
label yt={1,2}. Let A (k,x,m) be a linear matrix which 
maps an original observation xt into a transformed 
one as vt=ATxt, where xt is a k-dimensional vector, vt 
is an m-dimensional vector and m ≤ k. In [6,8] we 
have suggested that the convex nature of (2) due to 
the application –Ln[.] over the integral is not 
appropriate to obtain the transformation matrix. 
Instead, we proposed a surrogate cost function which 
is based on the Chernoff distance as follows: 
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where for convenience the a priori probabilities have 
been included inside the expression of the conditional 
probabilities, the integral has been substituted by a 
summation because the training set is finite, the 
hyperbolic tangent has been introduced for 
convenience and S>0 is a constant factor that controls 
the dynamic range of the argument. Note that the 
effect of tanh(.) is that when the pdf’s of the two 
classes tend to overlap both D and D  tend to zero 
but when the overlap decreases then D  tends to one. 
The resulting function is concave increasing and 
facilitates the search for minimum confusability 
between classes by searching for the maximum of (3). 
This search will be done with a stochastic gradient 
ascent method [10] as follows. In constrained 
optimization problems, the cost functions use to be 
complicated and it is difficult to arrive to closed 
solutions. The cost function (3) has the form         
J(A) = f{g(A,v)}. In our work the function f{.} takes 
the form of tanh(-SLn(Σ(.))) and function           
g(A,v) =  p1(v)

α
p2(v)

1-α. The steepest ascent learning 
rule becomes 

 

Proceedings of the 7th WSEAS Int. Conf. on Signal Processing, Computational Geometry & Artificial Vision, Athens, Greece, August 24-26, 2007      46



)(

)()()1(

kAA

k

kk

A

AJ
AA

=

+

∂

∂
+= γ      (4) 

 
for {k=1,2,..., Nk} where k is the iteration index, Nk is 
the number of iterations, γk=γ0 (1-k/(Nk-1) is a step 
size that depends on the step and γ0 is a small 
initialization constant that has been set to 0,01 in the 
experiments. The gradient matrix A(k+1) is computed 
at the point A(k). Substituting equation (3) in (4) and 
making the derivatives and some mathematical 
arrangements we have: 
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Apart from a constant factor, the expression Σ(g(A,v)) 
in (5) takes the form of a kind of expectation which is 
approximated by the sample mean of this function 
over the sample v1,…,vN set. This kind of learning 
algorithm, where the entire training set is used at 
every step of the iteration to form the expectation, is 
called batch learning. In principle, it is easy to form 
the gradient and Hessian of the cost functions 
because first and second derivatives with respect to 
the elements of A can be taken inside the expectation 
with respect to v. It suffices that function g(A,v) is 
twice differentiable with respect to the elements of A 
for this operation to be allowed. 

However, in many practical situations it may 
sometimes be tedious to compute the mean values or 
samples averages of the appropriate functions at each 
iteration step. This is especially problematic if the 
number of samples is not fixed but new observations 
keep on coming in the course of the iteration. The 
statistics of the samples may also be (slowly) varying, 
and the algorithm should be able to track this. In the 
learning paradigm called on-line learning, the whole 
sample is not used in batch at each step of the 
algorithm, but only the latest observation vector vt is 
used. In this case, the expectation has to be dropped 
from (4) and (5) and the on-line learning rule 
becomes 
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where now each sample vk is considered in the 
iteration (e.g., {k=1,2,..., N}), N is the sample size 
and γk=γ0  is a constant step size that has been set to 
1/N in our experiments. The gradient matrix A(k+1) is 
computed at the point A(k). Taking the expression of 

g(A,x) and making its derivative with respect to A and 
some mathematical arrangements we have: 
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This leads to fluctuating directions of instantaneous 
gradients on subsequent iteration steps ({1,2,..., Nk}), 
but the average direction in which the algorithm 
proceeds is still roughly the direction of the steepest 
descent of the batch cost function. The factor γk in (4) 
plays an important role in controlling these 
fluctuations. We set γk=min(10

-4
, 1/N) where  1/N 

controls the contribution of each sample and 10-4 
prevents from a high constant when N≤10-4 
Generally, stochastic gradients algorithms converge 
much slower than the respective steepest ascent 
algorithms. This is compensated by their often very 
low computational cost. The computational load at 
one step of the iteration is considerably reduced. This 
is because the value of the function ∂/∂A[g(A,x)] has 
to be computed only once, for vector xt. 
 

 

3   Optimization details 
Let’s particularize for the case in which each class 
j={1,2} probability pj(X) is characterized by a mixture 
model of M Gaussian components (GMM) with 
means µij, covariance matrixes Σij, weighting factors 
ω
i
j and {i=1,…,M}, Nij(µij,Σij). The objective is to 

obtain the matrix A such that the cost function is 
maximized since it is associated to a minimum 
classification error with the new pdf Nij(A

T
µ
i
j,A

T
Σ
i
jA). 

To achieve that we start by taking the partial 
derivatives of (7) with respect to A. Applying the 
chain rule to the square bracketed part we obtain the 
following derivative for which only a given mixture 
component from each class is considered 
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where Bij=A
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A and the component 

pairs (i,l) have been taken from class 1 and 2, 
respectively. We have previously explored this idea 
in [6, 8]. The key idea is to take the two closest 
components from each class. The distance between 
component pairs has been estimated by means of the 
Bhattacharyya distance. 
In the batch learning algorithm the derivatives in the 
square bracketed part of (5) are: 
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With all these equations we obtain two estimation 
expressions. One is the Iterative Chernoff 
Maximization using batch learning (ICM-B) in (5) 
and, the other, the Iterative Chernoff Maximization 
using online learning (ICM-O) in (7). 

Now we can make some considerations. The 
factor (1 – tanh2[.]) in (5) and (7) plays an interesting 
role because it is a reflection of the way in which the 
cost function progresses to its maximum when a new 
iteration is performed. Thus, this factor tends to zero 
making the derivative smaller step by step. The 
product between the smoothing factor S and the step 
size γk acts as a prevention from a fast progress of (3) 
to a maximum. 

Now we have to pay attention to the way in 
which the initialization matrix A0 is made. We will 
use the Bhattacharyya distance as defined in [5,4] 
which is coherent with the Chernoff distance when 
α=1/2. Then, A0 can be estimated as follows. Let 
U=[u1,…,un] be the eigenvector matrix, and let 
Λ=diag(λ1,…, λn) be the eigenvalue matrix of Σ2

-1
Σ1 

where the super indexes identifying the components 
from each class mixture have been omitted. Hence in 
the original space the Bhattacharyya distance can be 
written as 
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Since we want to maximize the B(1,2) distance, the 
columns of the matrix A(0) can be initialized with the 
m eigenvector of Σ2

-1
Σ1 corresponding to de m largest 

terms in last equation. 
 
 

4 Experiments and results 
For the classification experiments we have used a 
database of normal speech (class NS) and pathologic 
speech (class PS). The database is composed of 54 
speakers without pathology and 608 speakers with 
pathology from the Disordered Voice Database 
Model 4337. Recordings consisted in sustained vowel 
/ah/ with varying duration depending on the speaker. 
A half of the speakers in the database were used for 
training and half for testing. The original static 
features were MFE obtained by applying m=20 
triangular filters to the magnitude spectrum and the 

dimensionality in the transformed space vary from 
k=11 to k=18 in order to explore a wide range of 
dimensions. The speech waveforms are sampled at 25 
kHz or 50 kHz depending on the recording. The 
signals are blocked into 30 ms. frames with 20 ms. of 
overlap between adjacent frames. The number of 
training frames is 38128 and the same for testing. 
Each frame is passed through pre-emphasis filter 
(a=0,95) and a Hamming window. Then, a 2048 
point FFT is applied to the frame to produce a 1024-
point power spectrum. The power spectrum is 
estimated in the maximum power band. This band is 
taken from 0 to 4 kHz. The output power in a set of 
sub bands is estimated by combining a weighted sum 
of frequency components, shaped by the triangular 
filter, to obtain the output. Logarithms of the m=20 
outputs are then calculated arriving at 20 MFE’s 
feature vectors per frame. 

This paper is not devoted to the estimation of 
the optimum number of mixture components. For our 
experimental purposes we use what we consider a 
low (M=3) and a moderate high (M=7) number of 
components in this particular application. For 
comparison purposes the reference features are the 
MFE in the original space and MFCC in the 
transformed space. In all experiments the 
initialization method is the one explained in section 3. 
We have experimentally found that a good choice of 
the control factor in (3) is S=1/32. 

A speaker is classified as follows. Once the 
transformation matrix is estimated it is used to 
transform the feature vectors in the original space to 
the transformed one. Then, new GMM are estimated 
for each class. In the classification process the whole 
set of feature vectors of a given speaker are used to 
estimate an accumulated probability of pertaining to a 
given class. The class with the highest accumulated 
probability is the one we assign to that speaker. In 
table 1 and 2 we show the global classification scores 
for the four methods mentioned in the previous 
sections. Different dimensionalities m in the 
transformed space are considered. As we can see one 
(M=3) or both (M=7) versions of the methods we 
propose, ICM-B and ICM-O, outperform the MFE 
and MFCC in the most experiments. Despite that 
ICM-O performs worst than the ICM-B for M=7 its 
performance is better than the reference methods. 

It is interesting to observe that when M=7 the 
MFCC transformation does not improve the 
classification scores in comparison with MFE in 
contrast to what one could expect from the literature 
on speech recognition. The scores obtained from the 
other transformations are really improved. Both ICM-
B and ICM-O give the best results. For M=7 we 
obtain an improvement of 35,79% in the classification 
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error over the method MFE and MFCC while for 
M=3 using ICM-B the improve of classification error 
is 43,45% over MFE and 13,24% over MFCC. 

 
m\Method MFE MFCC ICM-O ICM-B 

11 93,05% 93,35% 92,75% 94,26% 

12 93,05% 92,75% 94,56% 95,77% 

13 93,05% 93,96% 92,75% 94,56% 

14 93,05% 94,86% 92,75% 95,17% 

15 93,05% 94,26% 92,75% 94,26% 

16 93,05% 95,47% 93,05% 95,77% 

17 93,055 94,86% 93,65% 96,07% 

18 93,05% 95,47% 93,65% 94,86% 

Table 1. Classification scores for M=3 

m\Method MFE MFCC ICM-O ICM-B 
11 95,77% 94,56% 96,07% 96,07% 

12 95,77% 94,56% 95,77% 96,37% 

13 95,77% 95,17% 96,07% 96,37% 

14 95,77% 94,56% 97,28% 96,68% 
15 95,77% 95,47% 96,68% 97,28% 

16 95,77% 95,47% 96,37% 96,37% 

17 95,77% 95,47% 96,07% 96,68% 

18 95,77% 95,77% 96,07% 96,37% 

Table 2. Classification scores for M=7 

In table 3 we can see the confusion matrix of 
which methods with the best classification score in 
tables 1 and 2. 
 

m M Pathology  NS PS 
17 3 NS 92,59% 7,41% 
17 3 PS 3,62% 96,38% 
14 7 NS 62,96% 37,04% 
14 7 PS 0,33% 99,67% 

Table 3. Confusion Matrices 

 

5 Conclusion 
We have formulated two forms of a cost function 
which is based on the Chernoff distance and we have 
given the formulae for iterative estimations in batch 
and on-line modes. These formulae have been 
particularized for Gaussian mixtures to model the 
competing classes in a transformed space. The 
simplified version with one Gaussian per class is 
computationally less demanding than the original one 
while give good classification scores. As expected, 
the online learning mode performs worst than the 
batch mode. However, the performance with 
pathological speech suggests that our online learning 
mode is well established. This and other related 

subjects (e.g., convergence) will be a matter of future 
work in binary and M-ary hypothesis testing with a 
special emphasis in extending the formulation to 
hidden Markov models.  
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