Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/75513
DC FieldValueLanguage
dc.contributor.authorLorenzo-García, F. D.en_US
dc.contributor.authorNavarro Mesa, J. L.en_US
dc.contributor.authorRavelo-Garcia, A. G.en_US
dc.date.accessioned2020-11-13T10:04:51Z-
dc.date.available2020-11-13T10:04:51Z-
dc.date.issued2007en_US
dc.identifier.isbn978-960-8457-97-3en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/75513-
dc.description.abstractIn a previous paper [8] we have proposed a method to improve the classification between two classes in a new transformed space using the Chernoff similarity measure. The key idea is to estimate a transformation matrix such that the overlap between the pdf associated to the competing classes is minimum thus leading to a minimization of the classification error. Starting from a surrogate cost function we review the previous method from the consideration that in many practical applications the (online) learning examples come in a sample-by-sample manner instead of a batch manner. Then we propose a new formulation of the learning algorithm in online mode and we derive the corresponding formulation. We arrive to iterative formulations of the estimation processes. The classes are modeled by a Gaussian mixture model with a varying number of components and we investigate the new method for several dimensionalities of the transformed subspace. The experiments are carried out over a database of speech with and without pathology and we show that the performance of the online approach compares favorably with respect to the batch mode and outperforms some reference methods.en_US
dc.languageengen_US
dc.sourceProceedings of The 7Th Wseas International Conference On Signal Processing, Computational Geometry And Artificial Vision (Iscgav'-07), p. 41-49, (2007)en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherRecognitionen_US
dc.subject.otherLearning Algorithmen_US
dc.subject.otherChernoff Bounden_US
dc.subject.otherTransformation Matrixen_US
dc.subject.otherCost Functionen_US
dc.subject.otherGaussian Mixture Modelsen_US
dc.titleAn extension of the Chernoff-based transformation matrix estimation method for on-line learning in Bayesian binary hypothesis testsen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference7th WSEAS International Conference on Signal Processing, Computational Geometry and Artificial Visionen_US
dc.identifier.isi000257283500007-
dc.description.lastpage49en_US
dc.description.firstpage41en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.contributor.daisngid8331666-
dc.contributor.daisngid2630721-
dc.contributor.daisngid1986395-
dc.description.numberofpages5en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Lorenzo-Garcia, FD-
dc.contributor.wosstandardWOS:Navarro-Mesa, JL-
dc.contributor.wosstandardWOS:Ravelo-Garcia, AG-
dc.date.coverdate2007en_US
dc.identifier.conferenceidevents120628-
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.event.eventsstartdate24-08-2007-
crisitem.event.eventsenddate26-08-2007-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0003-3860-3424-
crisitem.author.orcid0000-0002-8512-965X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameNavarro Mesa, Juan Luis-
crisitem.author.fullNameRavelo García, Antonio Gabriel-
Appears in Collections:Actas de congresos
Thumbnail
Adobe PDF (343,84 kB)
Show simple item record

Page view(s)

138
checked on Dec 28, 2024

Download(s)

37
checked on Dec 28, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.