Please use this identifier to cite or link to this item:
Title: Reliability analysis of the shyloc ccsds123 ip core for lossless hyperspectral image compression using cots FPGAs
Authors: Aranda, Luis Alberto
Sánchez Clemente, Antonio José 
Garcia-Herrero, Francisco
Barrios Alfaro, Yubal 
Sarmiento, Roberto 
Maestro, Juan Antonio
UNESCO Clasification: 3307 Tecnología electrónica
Keywords: Fault Injection
Hyperspectral Image Compression
Soft Errors
Issue Date: 2020
Journal: Electronics (Switzerland) 
Abstract: Hyperspectral images can comprise hundreds of spectral bands, which means that they can represent a large volume of data difficult to manage with the available on-board resources. Lossless compression solutions are interesting for reducing the amount of information stored or transmitted while preserving it at the same time. The Hyperspectral Lossless Compressor for space applications (SHyLoC), which is part of the European Space Agency (ESA) IP core’s library, has been demonstrated to meet the requirements of space missions in terms of compression efficiency, low complexity and high throughput. Currently, there is a trend to use Commercial Off-The-Shelf (COTS) on-board electronic devices on small satellites. Moreover, commercial Field-Programmable Gate Arrays (FPGAs) have been used in a number of them. Hence, a reliability analysis is required to ensure the robustness of the applications to Single Event Upsets (SEUs) in the configuration memory. In this work, we present a reliability analysis of this hyperspectral image compression module as a first step towards the development of ad-hoc fault-tolerant protection techniques for the SHyLoC IP core. The reliability analysis is performed using a fault-injection-based experimental set-up in which a hardware implementation of the Consultative Committee for Space Data Systems (CCSDS) 123.0-B-1 lossless compression standard is tested against configuration memory errors in a Xilinx Zynq XC7Z020 System-on-Chip. The results obtained for unhardened and redundancy-based protected versions of the module are put into perspective in terms of area/power consumption and availability/protection coverage gained to provide insight into the development of more efficient knowledge-based protection schemes.
ISSN: 2079-9292
DOI: 10.3390/electronics9101681
Source: Electronics (Switzerland) [EISSN 2079-9292], v. 9 (10), 1681, (Octubre 2020)
Appears in Collections:Artículos
Adobe PDF (2,04 MB)
Show full item record

Google ScholarTM




Export metadata

Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.