Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/74417
Campo DC Valoridioma
dc.contributor.authorGupta, Hardiken_US
dc.contributor.authorDahiya, Dhruven_US
dc.contributor.authorDutta, Malay Kishoreen_US
dc.contributor.authorTravieso, Carlos M.en_US
dc.contributor.authorVásquez Núñez, Jose Luisen_US
dc.date.accessioned2020-09-16T08:38:28Z-
dc.date.available2020-09-16T08:38:28Z-
dc.date.issued2019en_US
dc.identifier.isbn9781728109671en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/74417-
dc.description.abstractNavigating around unfamiliar places and performing other day to day physical tasks are some of the biggest challenges faced by visually impaired people. It is extremely difficult for visually impaired people to commute or perform daily tasks without physical assistance. The conventional methods to aid visually impaired people mostly uses sensors to estimate distances from objects which is very inefficient, expensive and difficult to use without assistance. The proposed work presents a way to provide sight to visually impaired in real time using deep learning by identifying some familiar places used in day to day life like Restrooms, Pharmacies and Metro Stations. This method uses convolutional neural networks to identify signs of public places which are similar around the globe. The proposed work was tested on large varying database and achieved a high accuracy of 90.992 percent. The experimental results show that this method for identifying Restrooms, Pharmacies and Metro Station signs is efficient, has low computational time and fulfils the needs of visually impaired people up to a large extent.en_US
dc.languageengen_US
dc.relation.ispartofIWOBI 2019 - Ieee International Work Conference On Bioinspired Intelligence, Proceedingsen_US
dc.sourceIWOBI 2019 - IEEE International Work Conference on Bioinspired Intelligence, Proceedings[EISSN ], p. 41-44, (Julio 2019)en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherDeep Learningen_US
dc.subject.otherObject Detectionen_US
dc.subject.otherReal Timeen_US
dc.subject.otherTensor Flowen_US
dc.subject.otherVisually Impaireden_US
dc.titleReal Time Surrounding Identification for Visually Impaired using Deep Learning Techniqueen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference2019 IEEE International Work Conference on Bioinspired Intelligence, IWOBI 2019en_US
dc.identifier.doi10.1109/IWOBI47054.2019.9114475en_US
dc.identifier.scopus85087282320-
dc.contributor.authorscopusid57209633441-
dc.contributor.authorscopusid57203917398-
dc.contributor.authorscopusid35291803600-
dc.contributor.authorscopusid6602376272-
dc.contributor.authorscopusid57209220026-
dc.description.lastpage44en_US
dc.description.firstpage41en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.date.coverdateJulio 2019en_US
dc.identifier.conferenceidevents121841-
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate22-10-2019-
crisitem.event.eventsenddate25-10-2019-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
crisitem.author.fullNameVásquez Núñez, Jose Luis-
Colección:Actas de congresos
Vista resumida

Citas SCOPUSTM   

2
actualizado el 17-nov-2024

Visitas

139
actualizado el 16-jun-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.