Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/74417
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gupta, Hardik | en_US |
dc.contributor.author | Dahiya, Dhruv | en_US |
dc.contributor.author | Dutta, Malay Kishore | en_US |
dc.contributor.author | Travieso, Carlos M. | en_US |
dc.contributor.author | Vásquez Núñez, Jose Luis | en_US |
dc.date.accessioned | 2020-09-16T08:38:28Z | - |
dc.date.available | 2020-09-16T08:38:28Z | - |
dc.date.issued | 2019 | en_US |
dc.identifier.isbn | 9781728109671 | en_US |
dc.identifier.other | Scopus | - |
dc.identifier.uri | http://hdl.handle.net/10553/74417 | - |
dc.description.abstract | Navigating around unfamiliar places and performing other day to day physical tasks are some of the biggest challenges faced by visually impaired people. It is extremely difficult for visually impaired people to commute or perform daily tasks without physical assistance. The conventional methods to aid visually impaired people mostly uses sensors to estimate distances from objects which is very inefficient, expensive and difficult to use without assistance. The proposed work presents a way to provide sight to visually impaired in real time using deep learning by identifying some familiar places used in day to day life like Restrooms, Pharmacies and Metro Stations. This method uses convolutional neural networks to identify signs of public places which are similar around the globe. The proposed work was tested on large varying database and achieved a high accuracy of 90.992 percent. The experimental results show that this method for identifying Restrooms, Pharmacies and Metro Station signs is efficient, has low computational time and fulfils the needs of visually impaired people up to a large extent. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | IWOBI 2019 - Ieee International Work Conference On Bioinspired Intelligence, Proceedings | en_US |
dc.source | IWOBI 2019 - IEEE International Work Conference on Bioinspired Intelligence, Proceedings[EISSN ], p. 41-44, (Julio 2019) | en_US |
dc.subject | 3307 Tecnología electrónica | en_US |
dc.subject.other | Deep Learning | en_US |
dc.subject.other | Object Detection | en_US |
dc.subject.other | Real Time | en_US |
dc.subject.other | Tensor Flow | en_US |
dc.subject.other | Visually Impaired | en_US |
dc.title | Real Time Surrounding Identification for Visually Impaired using Deep Learning Technique | en_US |
dc.type | info:eu-repo/semantics/conferenceObject | en_US |
dc.type | ConferenceObject | en_US |
dc.relation.conference | 2019 IEEE International Work Conference on Bioinspired Intelligence, IWOBI 2019 | en_US |
dc.identifier.doi | 10.1109/IWOBI47054.2019.9114475 | en_US |
dc.identifier.scopus | 85087282320 | - |
dc.contributor.authorscopusid | 57209633441 | - |
dc.contributor.authorscopusid | 57203917398 | - |
dc.contributor.authorscopusid | 35291803600 | - |
dc.contributor.authorscopusid | 6602376272 | - |
dc.contributor.authorscopusid | 57209220026 | - |
dc.description.lastpage | 44 | en_US |
dc.description.firstpage | 41 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Actas de congresos | en_US |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | Julio 2019 | en_US |
dc.identifier.conferenceid | events121841 | - |
dc.identifier.ulpgc | Sí | es |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.event.eventsstartdate | 22-10-2019 | - |
crisitem.event.eventsenddate | 25-10-2019 | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-4621-2768 | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Travieso González, Carlos Manuel | - |
crisitem.author.fullName | Vásquez Núñez, Jose Luis | - |
Appears in Collections: | Actas de congresos |
SCOPUSTM
Citations
2
checked on Nov 17, 2024
Page view(s)
139
checked on Jun 16, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.