Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/74417
Título: Real Time Surrounding Identification for Visually Impaired using Deep Learning Technique
Autores/as: Gupta, Hardik
Dahiya, Dhruv
Dutta, Malay Kishore
Travieso, Carlos M. 
Vásquez Núñez, Jose Luis 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Deep Learning
Object Detection
Real Time
Tensor Flow
Visually Impaired
Fecha de publicación: 2019
Publicación seriada: IWOBI 2019 - Ieee International Work Conference On Bioinspired Intelligence, Proceedings
Conferencia: 2019 IEEE International Work Conference on Bioinspired Intelligence, IWOBI 2019 
Resumen: Navigating around unfamiliar places and performing other day to day physical tasks are some of the biggest challenges faced by visually impaired people. It is extremely difficult for visually impaired people to commute or perform daily tasks without physical assistance. The conventional methods to aid visually impaired people mostly uses sensors to estimate distances from objects which is very inefficient, expensive and difficult to use without assistance. The proposed work presents a way to provide sight to visually impaired in real time using deep learning by identifying some familiar places used in day to day life like Restrooms, Pharmacies and Metro Stations. This method uses convolutional neural networks to identify signs of public places which are similar around the globe. The proposed work was tested on large varying database and achieved a high accuracy of 90.992 percent. The experimental results show that this method for identifying Restrooms, Pharmacies and Metro Station signs is efficient, has low computational time and fulfils the needs of visually impaired people up to a large extent.
URI: http://hdl.handle.net/10553/74417
ISBN: 9781728109671
DOI: 10.1109/IWOBI47054.2019.9114475
Fuente: IWOBI 2019 - IEEE International Work Conference on Bioinspired Intelligence, Proceedings[EISSN ], p. 41-44, (Julio 2019)
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

2
actualizado el 17-nov-2024

Visitas

139
actualizado el 16-jun-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.