Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/74417
Título: | Real Time Surrounding Identification for Visually Impaired using Deep Learning Technique | Autores/as: | Gupta, Hardik Dahiya, Dhruv Dutta, Malay Kishore Travieso, Carlos M. Vásquez Núñez, Jose Luis |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Deep Learning Object Detection Real Time Tensor Flow Visually Impaired |
Fecha de publicación: | 2019 | Publicación seriada: | IWOBI 2019 - Ieee International Work Conference On Bioinspired Intelligence, Proceedings | Conferencia: | 2019 IEEE International Work Conference on Bioinspired Intelligence, IWOBI 2019 | Resumen: | Navigating around unfamiliar places and performing other day to day physical tasks are some of the biggest challenges faced by visually impaired people. It is extremely difficult for visually impaired people to commute or perform daily tasks without physical assistance. The conventional methods to aid visually impaired people mostly uses sensors to estimate distances from objects which is very inefficient, expensive and difficult to use without assistance. The proposed work presents a way to provide sight to visually impaired in real time using deep learning by identifying some familiar places used in day to day life like Restrooms, Pharmacies and Metro Stations. This method uses convolutional neural networks to identify signs of public places which are similar around the globe. The proposed work was tested on large varying database and achieved a high accuracy of 90.992 percent. The experimental results show that this method for identifying Restrooms, Pharmacies and Metro Station signs is efficient, has low computational time and fulfils the needs of visually impaired people up to a large extent. | URI: | http://hdl.handle.net/10553/74417 | ISBN: | 9781728109671 | DOI: | 10.1109/IWOBI47054.2019.9114475 | Fuente: | IWOBI 2019 - IEEE International Work Conference on Bioinspired Intelligence, Proceedings[EISSN ], p. 41-44, (Julio 2019) |
Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.