Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/73844
Campo DC Valoridioma
dc.contributor.authorOrtega Sarmiento, Samuelen_US
dc.contributor.authorHalicek, Martinen_US
dc.contributor.authorFabelo Gómez, Himar Antonioen_US
dc.contributor.authorCamacho, Rafaelen_US
dc.contributor.authorPlaza De La Luz, Maríaen_US
dc.contributor.authorGodtliebsen, Freden_US
dc.contributor.authorMarrero Callicó, Gustavo Ivánen_US
dc.contributor.authorFei, Baoweien_US
dc.date.accessioned2020-07-28T10:19:42Z-
dc.date.available2020-07-28T10:19:42Z-
dc.date.issued2020en_US
dc.identifier.issn1424-8220en_US
dc.identifier.urihttp://hdl.handle.net/10553/73844-
dc.description.abstractHyperspectral imaging (HSI) technology has demonstrated potential to provide useful information about the chemical composition of tissue and its morphological features in a single image modality. Deep learning (DL) techniques have demonstrated the ability of automatic feature extraction from data for a successful classification. In this study, we exploit HSI and DL for the automatic differentiation of glioblastoma (GB) and non-tumor tissue on hematoxylin and eosin (H&E) stained histological slides of human brain tissue. GB detection is a challenging application, showing high heterogeneity in the cellular morphology across different patients. We employed an HIS microscope, with a spectral range from 400 to 1000 nm, to collect 517 HS cubes from 13 GB patients using 20 ✕ magnification. Using a convolutional neural network (CNN), we were able to automatically detect GB within the pathological slides, achieving average sensitivity and specificity values of 88% and 77%, respectively, representing an improvement of 7% and 8% respectively, as compared to the results obtained using RGB (red, green, and blue) images. This study demonstrates that the combination of hyperspectral microscopic imaging and deep learning is a promising tool for future computational pathologies.en_US
dc.languageengen_US
dc.relation.ispartofSensorsen_US
dc.sourceSensors [ISSN 1424-8220], v. 20 (7), 1911en_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherHyperspectral imagingen_US
dc.subject.otheroptical pathologyen_US
dc.subject.otherconvolutional neural networksen_US
dc.subject.othermedical optics and biotechnologyen_US
dc.titleHyperspectral imaging for the detection of glioblastoma tumor cells in H&E slides using convolutional neural networksen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/s20071911en_US
dc.identifier.pmid20-
dc.identifier.scopus2-s2.0-85082792148-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.identifier.issue7-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgces
dc.description.sjr0,636
dc.description.jcr3,576
dc.description.sjrqQ2
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-7519-954X-
crisitem.author.orcid0000-0002-9794-490X-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameOrtega Sarmiento,Samuel-
crisitem.author.fullNameFabelo Gómez, Himar Antonio-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
Colección:Artículos
miniatura
Adobe PDF (7,38 MB)
Vista resumida

Citas SCOPUSTM   

71
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

60
actualizado el 17-nov-2024

Visitas

88
actualizado el 28-sep-2024

Descargas

140
actualizado el 28-sep-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.