Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/73844
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Ortega Sarmiento, Samuel | en_US |
dc.contributor.author | Halicek, Martin | en_US |
dc.contributor.author | Fabelo Gómez, Himar Antonio | en_US |
dc.contributor.author | Camacho, Rafael | en_US |
dc.contributor.author | Plaza De La Luz, María | en_US |
dc.contributor.author | Godtliebsen, Fred | en_US |
dc.contributor.author | Marrero Callicó, Gustavo Iván | en_US |
dc.contributor.author | Fei, Baowei | en_US |
dc.date.accessioned | 2020-07-28T10:19:42Z | - |
dc.date.available | 2020-07-28T10:19:42Z | - |
dc.date.issued | 2020 | en_US |
dc.identifier.issn | 1424-8220 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/73844 | - |
dc.description.abstract | Hyperspectral imaging (HSI) technology has demonstrated potential to provide useful information about the chemical composition of tissue and its morphological features in a single image modality. Deep learning (DL) techniques have demonstrated the ability of automatic feature extraction from data for a successful classification. In this study, we exploit HSI and DL for the automatic differentiation of glioblastoma (GB) and non-tumor tissue on hematoxylin and eosin (H&E) stained histological slides of human brain tissue. GB detection is a challenging application, showing high heterogeneity in the cellular morphology across different patients. We employed an HIS microscope, with a spectral range from 400 to 1000 nm, to collect 517 HS cubes from 13 GB patients using 20 ✕ magnification. Using a convolutional neural network (CNN), we were able to automatically detect GB within the pathological slides, achieving average sensitivity and specificity values of 88% and 77%, respectively, representing an improvement of 7% and 8% respectively, as compared to the results obtained using RGB (red, green, and blue) images. This study demonstrates that the combination of hyperspectral microscopic imaging and deep learning is a promising tool for future computational pathologies. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Sensors | en_US |
dc.source | Sensors [ISSN 1424-8220], v. 20 (7), 1911 | en_US |
dc.subject | 3314 Tecnología médica | en_US |
dc.subject.other | Hyperspectral imaging | en_US |
dc.subject.other | optical pathology | en_US |
dc.subject.other | convolutional neural networks | en_US |
dc.subject.other | medical optics and biotechnology | en_US |
dc.title | Hyperspectral imaging for the detection of glioblastoma tumor cells in H&E slides using convolutional neural networks | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.3390/s20071911 | en_US |
dc.identifier.pmid | 20 | - |
dc.identifier.scopus | 2-s2.0-85082792148 | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.identifier.issue | 7 | - |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.utils.revision | Sí | en_US |
dc.identifier.ulpgc | Sí | es |
dc.description.sjr | 0,636 | |
dc.description.jcr | 3,576 | |
dc.description.sjrq | Q2 | |
dc.description.jcrq | Q2 | |
dc.description.scie | SCIE | |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | Departamento de Ingeniería Electrónica y Automática | - |
crisitem.author.orcid | 0000-0002-7519-954X | - |
crisitem.author.orcid | 0000-0002-9794-490X | - |
crisitem.author.orcid | 0000-0002-3784-5504 | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.fullName | Ortega Sarmiento,Samuel | - |
crisitem.author.fullName | Fabelo Gómez, Himar Antonio | - |
crisitem.author.fullName | Marrero Callicó, Gustavo Iván | - |
Colección: | Artículos |
Citas SCOPUSTM
71
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
60
actualizado el 17-nov-2024
Visitas
88
actualizado el 28-sep-2024
Descargas
140
actualizado el 28-sep-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.