Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/73844
Título: Hyperspectral imaging for the detection of glioblastoma tumor cells in H&E slides using convolutional neural networks
Autores/as: Ortega Sarmiento, Samuel 
Halicek, Martin
Fabelo Gómez, Himar Antonio 
Camacho, Rafael
Plaza De La Luz, María
Godtliebsen, Fred
Marrero Callicó, Gustavo Iván 
Fei, Baowei
Clasificación UNESCO: 3314 Tecnología médica
Palabras clave: Hyperspectral imaging
optical pathology
convolutional neural networks
medical optics and biotechnology
Fecha de publicación: 2020
Publicación seriada: Sensors 
Resumen: Hyperspectral imaging (HSI) technology has demonstrated potential to provide useful information about the chemical composition of tissue and its morphological features in a single image modality. Deep learning (DL) techniques have demonstrated the ability of automatic feature extraction from data for a successful classification. In this study, we exploit HSI and DL for the automatic differentiation of glioblastoma (GB) and non-tumor tissue on hematoxylin and eosin (H&E) stained histological slides of human brain tissue. GB detection is a challenging application, showing high heterogeneity in the cellular morphology across different patients. We employed an HIS microscope, with a spectral range from 400 to 1000 nm, to collect 517 HS cubes from 13 GB patients using 20 ✕ magnification. Using a convolutional neural network (CNN), we were able to automatically detect GB within the pathological slides, achieving average sensitivity and specificity values of 88% and 77%, respectively, representing an improvement of 7% and 8% respectively, as compared to the results obtained using RGB (red, green, and blue) images. This study demonstrates that the combination of hyperspectral microscopic imaging and deep learning is a promising tool for future computational pathologies.
URI: http://hdl.handle.net/10553/73844
ISSN: 1424-8220
DOI: 10.3390/s20071911
Fuente: Sensors [ISSN 1424-8220], v. 20 (7), 1911
Colección:Artículos
miniatura
Adobe PDF (7,38 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.