Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/73844
DC FieldValueLanguage
dc.contributor.authorOrtega Sarmiento, Samuelen_US
dc.contributor.authorHalicek, Martinen_US
dc.contributor.authorFabelo Gómez, Himar Antonioen_US
dc.contributor.authorCamacho, Rafaelen_US
dc.contributor.authorPlaza De La Luz, Maríaen_US
dc.contributor.authorGodtliebsen, Freden_US
dc.contributor.authorMarrero Callicó, Gustavo Ivánen_US
dc.contributor.authorFei, Baoweien_US
dc.date.accessioned2020-07-28T10:19:42Z-
dc.date.available2020-07-28T10:19:42Z-
dc.date.issued2020en_US
dc.identifier.issn1424-8220en_US
dc.identifier.urihttp://hdl.handle.net/10553/73844-
dc.description.abstractHyperspectral imaging (HSI) technology has demonstrated potential to provide useful information about the chemical composition of tissue and its morphological features in a single image modality. Deep learning (DL) techniques have demonstrated the ability of automatic feature extraction from data for a successful classification. In this study, we exploit HSI and DL for the automatic differentiation of glioblastoma (GB) and non-tumor tissue on hematoxylin and eosin (H&E) stained histological slides of human brain tissue. GB detection is a challenging application, showing high heterogeneity in the cellular morphology across different patients. We employed an HIS microscope, with a spectral range from 400 to 1000 nm, to collect 517 HS cubes from 13 GB patients using 20 ✕ magnification. Using a convolutional neural network (CNN), we were able to automatically detect GB within the pathological slides, achieving average sensitivity and specificity values of 88% and 77%, respectively, representing an improvement of 7% and 8% respectively, as compared to the results obtained using RGB (red, green, and blue) images. This study demonstrates that the combination of hyperspectral microscopic imaging and deep learning is a promising tool for future computational pathologies.en_US
dc.languageengen_US
dc.relation.ispartofSensorsen_US
dc.sourceSensors [ISSN 1424-8220], v. 20 (7), 1911en_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherHyperspectral imagingen_US
dc.subject.otheroptical pathologyen_US
dc.subject.otherconvolutional neural networksen_US
dc.subject.othermedical optics and biotechnologyen_US
dc.titleHyperspectral imaging for the detection of glioblastoma tumor cells in H&E slides using convolutional neural networksen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/s20071911en_US
dc.identifier.pmid20-
dc.identifier.scopus2-s2.0-85082792148-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.identifier.issue7-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgces
dc.description.sjr0,636
dc.description.jcr3,576
dc.description.sjrqQ2
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-7519-954X-
crisitem.author.orcid0000-0002-9794-490X-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameOrtega Sarmiento,Samuel-
crisitem.author.fullNameFabelo Gómez, Himar Antonio-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
Appears in Collections:Artículos
Thumbnail
Adobe PDF (7,38 MB)
Show simple item record

SCOPUSTM   
Citations

70
checked on Nov 10, 2024

WEB OF SCIENCETM
Citations

59
checked on Nov 10, 2024

Page view(s)

88
checked on Sep 28, 2024

Download(s)

140
checked on Sep 28, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.