Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/73844
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ortega Sarmiento, Samuel | en_US |
dc.contributor.author | Halicek, Martin | en_US |
dc.contributor.author | Fabelo Gómez, Himar Antonio | en_US |
dc.contributor.author | Camacho, Rafael | en_US |
dc.contributor.author | Plaza De La Luz, María | en_US |
dc.contributor.author | Godtliebsen, Fred | en_US |
dc.contributor.author | Marrero Callicó, Gustavo Iván | en_US |
dc.contributor.author | Fei, Baowei | en_US |
dc.date.accessioned | 2020-07-28T10:19:42Z | - |
dc.date.available | 2020-07-28T10:19:42Z | - |
dc.date.issued | 2020 | en_US |
dc.identifier.issn | 1424-8220 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/73844 | - |
dc.description.abstract | Hyperspectral imaging (HSI) technology has demonstrated potential to provide useful information about the chemical composition of tissue and its morphological features in a single image modality. Deep learning (DL) techniques have demonstrated the ability of automatic feature extraction from data for a successful classification. In this study, we exploit HSI and DL for the automatic differentiation of glioblastoma (GB) and non-tumor tissue on hematoxylin and eosin (H&E) stained histological slides of human brain tissue. GB detection is a challenging application, showing high heterogeneity in the cellular morphology across different patients. We employed an HIS microscope, with a spectral range from 400 to 1000 nm, to collect 517 HS cubes from 13 GB patients using 20 ✕ magnification. Using a convolutional neural network (CNN), we were able to automatically detect GB within the pathological slides, achieving average sensitivity and specificity values of 88% and 77%, respectively, representing an improvement of 7% and 8% respectively, as compared to the results obtained using RGB (red, green, and blue) images. This study demonstrates that the combination of hyperspectral microscopic imaging and deep learning is a promising tool for future computational pathologies. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Sensors | en_US |
dc.source | Sensors [ISSN 1424-8220], v. 20 (7), 1911 | en_US |
dc.subject | 3314 Tecnología médica | en_US |
dc.subject.other | Hyperspectral imaging | en_US |
dc.subject.other | optical pathology | en_US |
dc.subject.other | convolutional neural networks | en_US |
dc.subject.other | medical optics and biotechnology | en_US |
dc.title | Hyperspectral imaging for the detection of glioblastoma tumor cells in H&E slides using convolutional neural networks | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.3390/s20071911 | en_US |
dc.identifier.pmid | 20 | - |
dc.identifier.scopus | 2-s2.0-85082792148 | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.identifier.issue | 7 | - |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.utils.revision | Sí | en_US |
dc.identifier.ulpgc | Sí | es |
dc.description.sjr | 0,636 | |
dc.description.jcr | 3,576 | |
dc.description.sjrq | Q2 | |
dc.description.jcrq | Q2 | |
dc.description.scie | SCIE | |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | Departamento de Ingeniería Electrónica y Automática | - |
crisitem.author.orcid | 0000-0002-7519-954X | - |
crisitem.author.orcid | 0000-0002-9794-490X | - |
crisitem.author.orcid | 0000-0002-3784-5504 | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.fullName | Ortega Sarmiento,Samuel | - |
crisitem.author.fullName | Fabelo Gómez, Himar Antonio | - |
crisitem.author.fullName | Marrero Callicó, Gustavo Iván | - |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
70
checked on Nov 10, 2024
WEB OF SCIENCETM
Citations
59
checked on Nov 10, 2024
Page view(s)
88
checked on Sep 28, 2024
Download(s)
140
checked on Sep 28, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.