Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/72791
Title: Solvability in Hölder spaces of an integral equation which models dynamics of the capillary rise
Authors: Okrasińska-Płociniczak, Hanna
Płociniczak, Łukasz
Rocha, Juan 
Sadarangani, Kishin 
UNESCO Clasification: 120215 Ecuaciones integrales
120299 Otras (especificar)
Keywords: Capillary rise
Fixed point
Hölder spaces
Nonlinear volterra equation
Issue Date: 2020
Journal: Journal of Mathematical Analysis and Applications 
Abstract: In this paper, we focus on an integral equation which allows us to model the dynamics of the capillary rise of a fluid inside a tubular column. Using Schauder's fixed-point theorem, we prove that such integral equation has at least one solution in the Hölder space H1[0,b], where b>0. Moreover, we are able to prove the uniqueness of the solution under certain conditions. Our results extend the ones obtained in earlier works (see [5]).
URI: http://hdl.handle.net/10553/72791
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2020.124237
Source: Journal of Mathematical Analysis and Applications [ISSN 0022-247X], v. 490 (1), (Octubre 2020)
Appears in Collections:Artículos
Show full item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.