Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/72791
Title: Solvability in Hölder spaces of an integral equation which models dynamics of the capillary rise
Authors: Okrasińska-Płociniczak, Hanna
Płociniczak, Łukasz
Rocha, Juan 
Sadarangani, Kishin 
UNESCO Clasification: 120215 Ecuaciones integrales
120299 Otras (especificar)
Keywords: Capillary rise
Fixed point
Hölder spaces
Nonlinear volterra equation
Issue Date: 2020
Journal: Journal of Mathematical Analysis and Applications 
Abstract: In this paper, we focus on an integral equation which allows us to model the dynamics of the capillary rise of a fluid inside a tubular column. Using Schauder's fixed-point theorem, we prove that such integral equation has at least one solution in the Hölder space H1[0,b], where b>0. Moreover, we are able to prove the uniqueness of the solution under certain conditions. Our results extend the ones obtained in earlier works (see [5]).
URI: http://hdl.handle.net/10553/72791
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2020.124237
Source: Journal of Mathematical Analysis and Applications [ISSN 0022-247X], v. 490 (1), (Octubre 2020)
Appears in Collections:Artículos
Show full item record

SCOPUSTM   
Citations

8
checked on Dec 8, 2024

WEB OF SCIENCETM
Citations

7
checked on Dec 8, 2024

Page view(s)

115
checked on Jan 27, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.