Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/72791
Campo DC Valoridioma
dc.contributor.authorOkrasińska-Płociniczak, Hannaen_US
dc.contributor.authorPłociniczak, Łukaszen_US
dc.contributor.authorRocha, Juanen_US
dc.contributor.authorSadarangani, Kishinen_US
dc.date.accessioned2020-05-27T20:06:06Z-
dc.date.available2020-05-27T20:06:06Z-
dc.date.issued2020en_US
dc.identifier.issn0022-247Xen_US
dc.identifier.otherScopus-
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/72791-
dc.description.abstractIn this paper, we focus on an integral equation which allows us to model the dynamics of the capillary rise of a fluid inside a tubular column. Using Schauder's fixed-point theorem, we prove that such integral equation has at least one solution in the Hölder space H1[0,b], where b>0. Moreover, we are able to prove the uniqueness of the solution under certain conditions. Our results extend the ones obtained in earlier works (see [5]).en_US
dc.languageengen_US
dc.relation.ispartofJournal of Mathematical Analysis and Applicationsen_US
dc.sourceJournal of Mathematical Analysis and Applications [ISSN 0022-247X], v. 490 (1), (Octubre 2020)en_US
dc.subject120215 Ecuaciones integralesen_US
dc.subject120299 Otras (especificar)en_US
dc.subject.otherCapillary rise-
dc.subject.otherFixed point-
dc.subject.otherHölder spaces-
dc.subject.otherNonlinear volterra equation-
dc.titleSolvability in Hölder spaces of an integral equation which models dynamics of the capillary riseen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jmaa.2020.124237en_US
dc.identifier.scopus85084656603-
dc.identifier.isi000535982700030-
dc.contributor.authorscopusid55879271900-
dc.contributor.authorscopusid54417820200-
dc.contributor.authorscopusid55938905900-
dc.contributor.authorscopusid55964919000-
dc.identifier.eissn1096-0813-
dc.identifier.issue1-
dc.relation.volume490en_US
dc.investigacionCiencias-
dc.type2Artículoen_US
dc.contributor.daisngid40237278-
dc.contributor.daisngid1893548-
dc.contributor.daisngid31521759-
dc.contributor.daisngid298123-
dc.description.numberofpages13en_US
dc.utils.revision-
dc.contributor.wosstandardWOS:Okrasinka-Plociniczak, H-
dc.contributor.wosstandardWOS:Plociniczak, L-
dc.contributor.wosstandardWOS:Rocha, J-
dc.contributor.wosstandardWOS:Sadarangani, K-
dc.date.coverdateOctubre 2020en_US
dc.identifier.ulpgces
dc.description.sjr0,951
dc.description.jcr1,583
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0002-3243-8256-
crisitem.author.orcid0000-0002-7090-0114-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.fullNameRocha Martín, Juan-
crisitem.author.fullNameSadarangani Sadarangani, Kishin Bhagwands-
Colección:Artículos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.