Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/70589
DC FieldValueLanguage
dc.contributor.authorSalgueiro Romero, Luisen_US
dc.contributor.authorMarcello Ruiz, Francisco Javieren_US
dc.contributor.authorVilaplana, Verónicaen_US
dc.date.accessioned2020-03-02T08:02:09Z-
dc.date.available2020-03-02T08:02:09Z-
dc.date.issued2020en_US
dc.identifier.urihttp://hdl.handle.net/10553/70589-
dc.description.abstractMany remote sensing applications require high spatial resolution images, but the elevated cost of these images makes some studies unfeasible. Single-image super-resolution algorithms can improve the spatial resolution of a lowresolution image by recovering feature details learned from pairs of low-high resolution images. In this work, several configurations of ESRGAN, a state-of-the-art algorithm for image super-resolution, are tested. We make a comparison between several scenarios, with different modes of upsampling and channels involved. The best results are obtained training a model with RGB-IR channels and using progressive upsampling.en_US
dc.languageengen_US
dc.publisherThe international society for optics and photonics (SPIE)en_US
dc.sourceProceedings SPIE 11433, Twelfth International Conference on Machine Vision (ICMV 2019), 114331J (31 January 2020)en_US
dc.subject250616 Teledetección (Geología)en_US
dc.subject2209 Ópticaen_US
dc.titleComparative study of upsampling methods for super-resolution in remote sensingen_US
dc.typeinfo:eu-repo/semantics/conferenceobjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference12th International Conference on Machine Vision, ICMV 2019en_US
dc.identifier.doi10.1117/12.2557357en_US
dc.identifier.scopus85081169799-
dc.contributor.authorscopusid57215564555-
dc.contributor.authorscopusid6602158797-
dc.contributor.authorscopusid23394280500-
dc.investigacionCienciasen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.identifier.conferenceidevents121683-
dc.identifier.ulpgces
dc.contributor.buulpgcBU-TELen_US
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate16-11-2019-
crisitem.event.eventsenddate18-11-2019-
crisitem.author.deptGIR IOCAG: Procesado de Imágenes y Teledetección-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-9646-1017-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.fullNameMarcello Ruiz, Francisco Javier-
Appears in Collections:Actas de congresos
Show simple item record

SCOPUSTM   
Citations

2
checked on Mar 30, 2025

WEB OF SCIENCETM
Citations

4
checked on Mar 30, 2025

Page view(s)

83
checked on May 27, 2023

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.