Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/70589
Campo DC Valoridioma
dc.contributor.authorSalgueiro Romero, Luisen_US
dc.contributor.authorMarcello Ruiz, Francisco Javieren_US
dc.contributor.authorVilaplana, Verónicaen_US
dc.date.accessioned2020-03-02T08:02:09Z-
dc.date.available2020-03-02T08:02:09Z-
dc.date.issued2020en_US
dc.identifier.urihttp://hdl.handle.net/10553/70589-
dc.description.abstractMany remote sensing applications require high spatial resolution images, but the elevated cost of these images makes some studies unfeasible. Single-image super-resolution algorithms can improve the spatial resolution of a lowresolution image by recovering feature details learned from pairs of low-high resolution images. In this work, several configurations of ESRGAN, a state-of-the-art algorithm for image super-resolution, are tested. We make a comparison between several scenarios, with different modes of upsampling and channels involved. The best results are obtained training a model with RGB-IR channels and using progressive upsampling.en_US
dc.languageengen_US
dc.publisherThe international society for optics and photonics (SPIE)en_US
dc.sourceProceedings SPIE 11433, Twelfth International Conference on Machine Vision (ICMV 2019), 114331J (31 January 2020)en_US
dc.subject250616 Teledetección (Geología)en_US
dc.subject2209 Ópticaen_US
dc.titleComparative study of upsampling methods for super-resolution in remote sensingen_US
dc.typeinfo:eu-repo/semantics/conferenceobjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference12th International Conference on Machine Vision, ICMV 2019en_US
dc.identifier.doi10.1117/12.2557357en_US
dc.identifier.scopus85081169799-
dc.contributor.authorscopusid57215564555-
dc.contributor.authorscopusid6602158797-
dc.contributor.authorscopusid23394280500-
dc.investigacionCienciasen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.identifier.conferenceidevents121683-
dc.identifier.ulpgces
dc.contributor.buulpgcBU-TELen_US
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IOCAG: Procesado de Imágenes y Teledetección-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-9646-1017-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.fullNameMarcello Ruiz, Francisco Javier-
crisitem.event.eventsstartdate16-11-2019-
crisitem.event.eventsenddate18-11-2019-
Colección:Actas de congresos
Vista resumida

Citas SCOPUSTM   

1
actualizado el 24-nov-2024

Citas de WEB OF SCIENCETM
Citations

4
actualizado el 24-nov-2024

Visitas

83
actualizado el 27-may-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.