Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/70589
Título: | Comparative study of upsampling methods for super-resolution in remote sensing | Autores/as: | Salgueiro Romero, Luis Marcello Ruiz, Francisco Javier Vilaplana, Verónica |
Clasificación UNESCO: | 250616 Teledetección (Geología) 2209 Óptica |
Fecha de publicación: | 2020 | Editor/a: | The international society for optics and photonics (SPIE) | Conferencia: | 12th International Conference on Machine Vision, ICMV 2019 | Resumen: | Many remote sensing applications require high spatial resolution images, but the elevated cost of these images makes some studies unfeasible. Single-image super-resolution algorithms can improve the spatial resolution of a lowresolution image by recovering feature details learned from pairs of low-high resolution images. In this work, several configurations of ESRGAN, a state-of-the-art algorithm for image super-resolution, are tested. We make a comparison between several scenarios, with different modes of upsampling and channels involved. The best results are obtained training a model with RGB-IR channels and using progressive upsampling. | URI: | http://hdl.handle.net/10553/70589 | DOI: | 10.1117/12.2557357 | Fuente: | Proceedings SPIE 11433, Twelfth International Conference on Machine Vision (ICMV 2019), 114331J (31 January 2020) |
Colección: | Actas de congresos |
Citas SCOPUSTM
1
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
4
actualizado el 15-dic-2024
Visitas
83
actualizado el 27-may-2023
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.