Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/70589
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Salgueiro Romero, Luis | en_US |
dc.contributor.author | Marcello Ruiz, Francisco Javier | en_US |
dc.contributor.author | Vilaplana, Verónica | en_US |
dc.date.accessioned | 2020-03-02T08:02:09Z | - |
dc.date.available | 2020-03-02T08:02:09Z | - |
dc.date.issued | 2020 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/70589 | - |
dc.description.abstract | Many remote sensing applications require high spatial resolution images, but the elevated cost of these images makes some studies unfeasible. Single-image super-resolution algorithms can improve the spatial resolution of a lowresolution image by recovering feature details learned from pairs of low-high resolution images. In this work, several configurations of ESRGAN, a state-of-the-art algorithm for image super-resolution, are tested. We make a comparison between several scenarios, with different modes of upsampling and channels involved. The best results are obtained training a model with RGB-IR channels and using progressive upsampling. | en_US |
dc.language | eng | en_US |
dc.publisher | The international society for optics and photonics (SPIE) | en_US |
dc.source | Proceedings SPIE 11433, Twelfth International Conference on Machine Vision (ICMV 2019), 114331J (31 January 2020) | en_US |
dc.subject | 250616 Teledetección (Geología) | en_US |
dc.subject | 2209 Óptica | en_US |
dc.title | Comparative study of upsampling methods for super-resolution in remote sensing | en_US |
dc.type | info:eu-repo/semantics/conferenceobject | en_US |
dc.type | ConferenceObject | en_US |
dc.relation.conference | 12th International Conference on Machine Vision, ICMV 2019 | en_US |
dc.identifier.doi | 10.1117/12.2557357 | en_US |
dc.identifier.scopus | 85081169799 | - |
dc.contributor.authorscopusid | 57215564555 | - |
dc.contributor.authorscopusid | 6602158797 | - |
dc.contributor.authorscopusid | 23394280500 | - |
dc.investigacion | Ciencias | en_US |
dc.type2 | Actas de congresos | en_US |
dc.utils.revision | Sí | en_US |
dc.identifier.conferenceid | events121683 | - |
dc.identifier.ulpgc | Sí | es |
dc.contributor.buulpgc | BU-TEL | en_US |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.event.eventsstartdate | 16-11-2019 | - |
crisitem.event.eventsenddate | 18-11-2019 | - |
crisitem.author.dept | GIR IOCAG: Procesado de Imágenes y Teledetección | - |
crisitem.author.dept | IU de Oceanografía y Cambio Global | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-9646-1017 | - |
crisitem.author.parentorg | IU de Oceanografía y Cambio Global | - |
crisitem.author.fullName | Marcello Ruiz, Francisco Javier | - |
Colección: | Actas de congresos |
Citas SCOPUSTM
1
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
4
actualizado el 17-nov-2024
Visitas
83
actualizado el 27-may-2023
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.