Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/70020
Título: | Dynamically enhanced static handwriting representation for Parkinson's disease detection | Autores/as: | Diaz, Moises Ferrer, Miguel Angel Impedovo, Donato Pirlo, Giuseppe Vessio, Gennaro |
Clasificación UNESCO: | 3314 Tecnología médica 320507 Neurología |
Palabras clave: | Computer Aided Diagnosis Convolutional Neural Networks Dynamically Enhanced Static Handwriting E-Health Parkinson'S Disease |
Fecha de publicación: | 2019 | Publicación seriada: | Pattern Recognition Letters | Resumen: | Computer aided diagnosis systems can provide non-invasive, low-cost tools to support clinicians. These systems have the potential to assist the diagnosis and monitoring of neurodegenerative disorders, in particular Parkinson's disease (PD). Handwriting plays a special role in the context of PD assessment. In this paper, the discriminating power of “dynamically enhanced” static images of handwriting is investigated. The enhanced images are synthetically generated by exploiting simultaneously the static and dynamic properties of handwriting. Specifically, we propose a static representation that embeds dynamic information based on: (i) drawing the points of the samples, instead of linking them, so as to retain temporal/velocity information; and (ii) adding pen-ups for the same purpose. To evaluate the effectiveness of the new handwriting representation, a fair comparison between this approach and state-of-the-art methods based on static and dynamic handwriting is conducted on the same dataset, i.e. PaHaW. The classification workflow employs transfer learning to extract meaningful features from multiple representations of the input data. An ensemble of different classifiers is used to achieve the final predictions. Dynamically enhanced static handwriting is able to outperform the results obtained by using static and dynamic handwriting separately. | URI: | http://hdl.handle.net/10553/70020 | ISSN: | 0167-8655 | DOI: | 10.1016/j.patrec.2019.08.018 | Fuente: | Pattern Recognition Letters [ISSN 0167-8655], v. 128, p. 204-210 |
Colección: | Artículos |
Citas SCOPUSTM
83
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
62
actualizado el 17-nov-2024
Visitas
73
actualizado el 05-ago-2023
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.