Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/70020
Campo DC Valoridioma
dc.contributor.authorDiaz, Moisesen_US
dc.contributor.authorFerrer, Miguel Angelen_US
dc.contributor.authorImpedovo, Donatoen_US
dc.contributor.authorPirlo, Giuseppeen_US
dc.contributor.authorVessio, Gennaroen_US
dc.date.accessioned2020-02-05T12:51:57Z-
dc.date.available2020-02-05T12:51:57Z-
dc.date.issued2019en_US
dc.identifier.issn0167-8655en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/70020-
dc.description.abstractComputer aided diagnosis systems can provide non-invasive, low-cost tools to support clinicians. These systems have the potential to assist the diagnosis and monitoring of neurodegenerative disorders, in particular Parkinson's disease (PD). Handwriting plays a special role in the context of PD assessment. In this paper, the discriminating power of “dynamically enhanced” static images of handwriting is investigated. The enhanced images are synthetically generated by exploiting simultaneously the static and dynamic properties of handwriting. Specifically, we propose a static representation that embeds dynamic information based on: (i) drawing the points of the samples, instead of linking them, so as to retain temporal/velocity information; and (ii) adding pen-ups for the same purpose. To evaluate the effectiveness of the new handwriting representation, a fair comparison between this approach and state-of-the-art methods based on static and dynamic handwriting is conducted on the same dataset, i.e. PaHaW. The classification workflow employs transfer learning to extract meaningful features from multiple representations of the input data. An ensemble of different classifiers is used to achieve the final predictions. Dynamically enhanced static handwriting is able to outperform the results obtained by using static and dynamic handwriting separately.en_US
dc.languagespaen_US
dc.relation.ispartofPattern Recognition Lettersen_US
dc.sourcePattern Recognition Letters [ISSN 0167-8655], v. 128, p. 204-210en_US
dc.subject3314 Tecnología médicaen_US
dc.subject320507 Neurologíaen_US
dc.subject.otherComputer Aided Diagnosisen_US
dc.subject.otherConvolutional Neural Networksen_US
dc.subject.otherDynamically Enhanced Static Handwritingen_US
dc.subject.otherE-Healthen_US
dc.subject.otherParkinson'S Diseaseen_US
dc.titleDynamically enhanced static handwriting representation for Parkinson's disease detectionen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.patrec.2019.08.018
dc.identifier.scopus85072027447-
dc.identifier.isi000498398400029
dc.contributor.authorscopusid36760594500-
dc.contributor.authorscopusid55636321172-
dc.contributor.authorscopusid24821831600-
dc.contributor.authorscopusid55906867800-
dc.contributor.authorscopusid56407135000-
dc.description.lastpage210-
dc.description.firstpage204-
dc.relation.volume128-
dc.investigacionCiencias de la Saluden_US
dc.type2Artículoen_US
dc.contributor.daisngid31498511
dc.contributor.daisngid233119
dc.contributor.daisngid30606136
dc.contributor.daisngid443290
dc.contributor.daisngid7176487
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Diaz, M
dc.contributor.wosstandardWOS:Ferrer, MA
dc.contributor.wosstandardWOS:Impedovo, D
dc.contributor.wosstandardWOS:Pirlo, G
dc.contributor.wosstandardWOS:Vessio, G
dc.date.coverdateDiciembre 2019
dc.identifier.ulpgces
dc.description.sjr0,848
dc.description.jcr3,255
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Física-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0003-3878-3867-
crisitem.author.orcid0000-0002-2924-1225-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameDíaz Cabrera, Moisés-
crisitem.author.fullNameFerrer Ballester, Miguel Ángel-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

83
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

62
actualizado el 17-nov-2024

Visitas

73
actualizado el 05-ago-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.