Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/70020
Título: Dynamically enhanced static handwriting representation for Parkinson's disease detection
Autores/as: Diaz, Moises 
Ferrer, Miguel Angel 
Impedovo, Donato
Pirlo, Giuseppe
Vessio, Gennaro
Clasificación UNESCO: 3314 Tecnología médica
320507 Neurología
Palabras clave: Computer Aided Diagnosis
Convolutional Neural Networks
Dynamically Enhanced Static Handwriting
E-Health
Parkinson'S Disease
Fecha de publicación: 2019
Publicación seriada: Pattern Recognition Letters 
Resumen: Computer aided diagnosis systems can provide non-invasive, low-cost tools to support clinicians. These systems have the potential to assist the diagnosis and monitoring of neurodegenerative disorders, in particular Parkinson's disease (PD). Handwriting plays a special role in the context of PD assessment. In this paper, the discriminating power of “dynamically enhanced” static images of handwriting is investigated. The enhanced images are synthetically generated by exploiting simultaneously the static and dynamic properties of handwriting. Specifically, we propose a static representation that embeds dynamic information based on: (i) drawing the points of the samples, instead of linking them, so as to retain temporal/velocity information; and (ii) adding pen-ups for the same purpose. To evaluate the effectiveness of the new handwriting representation, a fair comparison between this approach and state-of-the-art methods based on static and dynamic handwriting is conducted on the same dataset, i.e. PaHaW. The classification workflow employs transfer learning to extract meaningful features from multiple representations of the input data. An ensemble of different classifiers is used to achieve the final predictions. Dynamically enhanced static handwriting is able to outperform the results obtained by using static and dynamic handwriting separately.
URI: http://hdl.handle.net/10553/70020
ISSN: 0167-8655
DOI: 10.1016/j.patrec.2019.08.018
Fuente: Pattern Recognition Letters [ISSN 0167-8655], v. 128, p. 204-210
Colección:Artículos
Vista completa

Citas SCOPUSTM   

84
actualizado el 05-ene-2025

Citas de WEB OF SCIENCETM
Citations

63
actualizado el 05-ene-2025

Visitas

73
actualizado el 05-ago-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.