Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/69251
Campo DC Valoridioma
dc.contributor.authorFlorimbi, Giordanaen_US
dc.contributor.authorFabelo Gómez, Himar Antonioen_US
dc.contributor.authorTorti, Emanueleen_US
dc.contributor.authorOrtega Sarmiento, Samuelen_US
dc.contributor.authorMarrero Martín, Margarita Luisaen_US
dc.contributor.authorMarrero Callicó, Gustavo Ivánen_US
dc.contributor.authorDanese, Giovannien_US
dc.contributor.authorLeporati, Francescoen_US
dc.date.accessioned2020-01-23T09:36:08Z-
dc.date.available2020-01-23T09:36:08Z-
dc.date.issued2020en_US
dc.identifier.issn2169-3536en_US
dc.identifier.urihttp://hdl.handle.net/10553/69251-
dc.description.abstractSeveral causes make brain cancer identification a challenging task for neurosurgeons during the surgical procedure. The surgeons’ naked eye sometimes is not enough to accurately delineate the brain tumor location and extension due to its diffuse nature that infiltrates in the surrounding healthy tissue. For this reason, a support system that provides accurate cancer delimitation is essential in order to improve the surgery outcomes and hence the patient’s quality of life. The brain cancer detection system developed as part of the “HypErspectraL Imaging Cancer Detection” (HELICoiD) European project meets this requirement exploiting a non-invasive technique suitable for medical diagnosis: the hyperspectral imaging (HSI). A crucial constraint that this system has to satisfy is providing a real-time response in order to not prolong the surgery. The large amount of data that characterizes the hyperspectral images, and the complex elaborations performed by the classification system make the High Performance Computing (HPC) systems essential to provide real-time processing. The most efficient implementation developed in this work, which exploits the Graphic Processing Unit (GPU) technology, is able to classify the biggest image of the database (worst case) in less than three seconds, largely satisfying the real-time constraint set to 1 minute for surgical procedures, becoming a potential solution to implement hyperspectral video processing in the near future.en_US
dc.languageengen_US
dc.relationIdentificación Hiperespectral de Tumores Cerebrales (Ithaca)en_US
dc.relationPlataforma H2/Sw Distribuida Para El Procesamiento Inteligente de Información Sensorial Heterogenea en Aplicaciones de Supervisión de Grandes Espacios Naturalesen_US
dc.relationHyperspectral Imaging Cancer Detection (Helicoid) (Contrato Nº 618080)en_US
dc.relation.ispartofIEEE Accessen_US
dc.sourceIEEE Access [ISSN 2169-3536], v. 8, p. 8485 - 8501en_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherHyperspectral imagingen_US
dc.subject.otherHigh performance computingen_US
dc.subject.otherGraphic processing uniten_US
dc.subject.otherParallel processingen_US
dc.subject.otherParallel architecturesen_US
dc.subject.otherImage processingen_US
dc.subject.otherBiomedical engineeringen_US
dc.subject.otherMedical diagnostic imagingen_US
dc.subject.otherCancer detectionen_US
dc.subject.otherSupervised classificationen_US
dc.subject.otherSupport vector machinesen_US
dc.subject.otherK-Nearest neighborsen_US
dc.subject.otherPrincipal component analysisen_US
dc.subject.otherK-meansen_US
dc.subject.otherMajority votingen_US
dc.titleTowards Real-Time Computing of Intraoperative Hyperspectral Imaging for Brain Cancer Detection Using Multi-GPU Platformsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/ACCESS.2020.2963939en_US
dc.description.lastpage8501-
dc.description.firstpage8485-
dc.relation.volume8-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgces
dc.description.sjr0,587
dc.description.jcr3,367
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.project.principalinvestigatorMarrero Callicó, Gustavo Iván-
crisitem.project.principalinvestigatorLópez Suárez, Sebastián Miguel-
crisitem.project.principalinvestigatorMarrero Callicó, Gustavo Iván-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Equipos y Sistemas de Comunicación-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-9794-490X-
crisitem.author.orcid0000-0002-7519-954X-
crisitem.author.orcid0000-0002-0861-9954-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameFabelo Gómez, Himar Antonio-
crisitem.author.fullNameOrtega Sarmiento,Samuel-
crisitem.author.fullNameMarrero Martín, Margarita Luisa-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
Colección:Artículos
miniatura
pdf
Adobe PDF (1,92 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.