Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/69251
Título: | Towards Real-Time Computing of Intraoperative Hyperspectral Imaging for Brain Cancer Detection Using Multi-GPU Platforms | Autores/as: | Florimbi, Giordana Fabelo Gómez, Himar Antonio Torti, Emanuele Ortega Sarmiento, Samuel Marrero Martín, Margarita Luisa Marrero Callicó, Gustavo Iván Danese, Giovanni Leporati, Francesco |
Clasificación UNESCO: | 3314 Tecnología médica | Palabras clave: | Hyperspectral imaging High performance computing Graphic processing unit Parallel processing Parallel architectures, et al. |
Fecha de publicación: | 2020 | Proyectos: | Identificación Hiperespectral de Tumores Cerebrales (Ithaca) Plataforma H2/Sw Distribuida Para El Procesamiento Inteligente de Información Sensorial Heterogenea en Aplicaciones de Supervisión de Grandes Espacios Naturales Hyperspectral Imaging Cancer Detection (Helicoid) (Contrato Nº 618080) |
Publicación seriada: | IEEE Access | Resumen: | Several causes make brain cancer identification a challenging task for neurosurgeons during the surgical procedure. The surgeons’ naked eye sometimes is not enough to accurately delineate the brain tumor location and extension due to its diffuse nature that infiltrates in the surrounding healthy tissue. For this reason, a support system that provides accurate cancer delimitation is essential in order to improve the surgery outcomes and hence the patient’s quality of life. The brain cancer detection system developed as part of the “HypErspectraL Imaging Cancer Detection” (HELICoiD) European project meets this requirement exploiting a non-invasive technique suitable for medical diagnosis: the hyperspectral imaging (HSI). A crucial constraint that this system has to satisfy is providing a real-time response in order to not prolong the surgery. The large amount of data that characterizes the hyperspectral images, and the complex elaborations performed by the classification system make the High Performance Computing (HPC) systems essential to provide real-time processing. The most efficient implementation developed in this work, which exploits the Graphic Processing Unit (GPU) technology, is able to classify the biggest image of the database (worst case) in less than three seconds, largely satisfying the real-time constraint set to 1 minute for surgical procedures, becoming a potential solution to implement hyperspectral video processing in the near future. | URI: | http://hdl.handle.net/10553/69251 | ISSN: | 2169-3536 | DOI: | 10.1109/ACCESS.2020.2963939 | Fuente: | IEEE Access [ISSN 2169-3536], v. 8, p. 8485 - 8501 |
Colección: | Artículos |
Citas de WEB OF SCIENCETM
Citations
29
actualizado el 15-dic-2024
Visitas
151
actualizado el 23-may-2024
Descargas
180
actualizado el 23-may-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.