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ABSTRACT Several causes make brain cancer identification a challenging task for neurosurgeons during
the surgical procedure. The surgeons’ naked eye sometimes is not enough to accurately delineate the
brain tumor location and extension due to its diffuse nature that infiltrates in the surrounding healthy
tissue. For this reason, a support system that provides accurate cancer delimitation is essential in order to
improve the surgery outcomes and hence the patient’s quality of life. The brain cancer detection system
developed as part of the ‘‘HypErspectraL Imaging Cancer Detection’’ (HELICoiD) European project meets
this requirement exploiting a non-invasive technique suitable for medical diagnosis: the hyperspectral
imaging (HSI). A crucial constraint that this system has to satisfy is providing a real-time response in order
to not prolong the surgery. The large amount of data that characterizes the hyperspectral images, and the
complex elaborations performed by the classification systemmake the High Performance Computing (HPC)
systems essential to provide real-time processing. The most efficient implementation developed in this work,
which exploits the Graphic Processing Unit (GPU) technology, is able to classify the biggest image of the
database (worst case) in less than three seconds, largely satisfying the real-time constraint set to 1 minute
for surgical procedures, becoming a potential solution to implement hyperspectral video processing in the
near future.

INDEX TERMS Hyperspectral imaging, high performance computing, graphic processing unit, parallel
processing, parallel architectures, image processing, biomedical engineering, medical diagnostic imaging,
cancer detection, supervised classification, support vector machines, K-Nearest neighbors, principal
component analysis, K-means, majority voting.

I. INTRODUCTION
Nowadays, the use of hyperspectral imaging (HSI) for cancer
tissue analysis and identification is continuously increasing
in the literature [1]–[3]. In particular, HSI is a promising
powerful technique for the identification and delineation of
the cancer area during surgical procedures, facilitating the
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accurate resection of the tumor tissue, being a non-invasive,
non-contact and non-ionizing technique [1]. HSI is an imag-
ing modality able to obtain both spatial and spectral infor-
mation from the scene that is being captured, measuring the
reflected, absorbed or emitted radiance at certain wavelengths
(also called spectral channels) [4].

In contrast with the standard RGB cameras that only
captures information in three spectral channels (red, green
and blue) within the visual range (400-700 nm), hyperspectral

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 8485

https://orcid.org/0000-0003-1062-3044
https://orcid.org/0000-0002-9794-490X
https://orcid.org/0000-0001-8437-8227
https://orcid.org/0000-0002-7519-954X
https://orcid.org/0000-0002-0861-9954
https://orcid.org/0000-0002-3784-5504
https://orcid.org/0000-0002-4411-681X
https://orcid.org/0000-0003-2901-4935


G. Florimbi et al.: Towards Real-Time Computing of Intraoperative HSI for Brain Cancer Detection Using Multi-GPU Platforms

(HS) cameras are able to capture a very large number
of spectral channels within the visual range and beyond
it. Normally, these cameras cover the VNIR (visual and
near-infrared) range (400-1000 nm), the NIR (near-infrared)
range (900-1700 nm) or the SWIR (short-wavelength
infrared) range (1000-2500 nm), depending on the type of
sensor employed for the acquisition of the data [5].

Due to the high dimensionality of the acquired data using
HS cameras, and the necessity of the intraoperative surgical
guidance tools to be executed in real-time, the use of highly
parallel high-performance processing platforms to process
the data becomes mandatory. Among the different available
parallel technologies, the Graphical Processing Units (GPUs)
are the most appealing solutions to execute intrinsically par-
allel algorithms that elaborate a huge amount of data. Several
aspects make the GPU technology preferable compared to
other High Performance Computing (HPC) solutions for this
specific application. This kind of device is hosted inside a
standard desktop case that can be placed inside the operating
room, where the classification takes place. Moreover, it is
worth noticing that the operating room does not present power
restrictions, so it is possible to introduce a desktop system
equipped with one or more GPUs to elaborate the images.
It is also important to highlight that this technology is char-
acterized by shorter development times and more flexibil-
ity compared to other devices, such as Field Programmable
Gate Arrays (FPGA) or Application Specific Integrated
Circuit (ASIC). In these last cases, it is also difficult to apply
modifications or extensions to the original design, since they
typically involve a complete re-design of the whole archi-
tecture. A crucial aspect to consider is that a desktop-based
solution allows to locally process data in real-time, with-
out resorting to remote host processing systems. This last
choice should be avoided in order to not transfer sensitive
data (such as brain images from patients) over general and
public networks. Moreover, the transmission of HS images,
whose size is in the order of hundreds of Megabytes, presents
unpredictable delays, slowing down the surgery duration.
These considerations, and the results that will be presented in
this work, reveal that a GPU solution within a local desktop
PC is currently highly suitable for HSI classification in the
intraoperative brain tumor detection application.

GPUs have already been used to analyze HS images
in other fields [6]–[8], obtaining huge speed-up compared
to the serial versions of the algorithms. As far as the
brain cancer detection is concerned, authors have already
exploited these devices to accelerate supervised [9] and unsu-
pervised [10] classification algorithms achieving real-time
developments.

The main goal of the work presented in this manuscript is
the use of a multi-GPU platform to accelerate the intraoper-
ative HS brain cancer detection algorithm developed during
the execution of the European HELICoiD project [11], [12]
to provide real-time classification during neurosurgical
procedures. Due to the importance of a precise resection
of brain tumors [13]–[15] and the lack of accurate tools to

assist in this task [16]–[20], HSI is becoming a promising
imaging technique to develop a surgical aid visualization
tool that will assist neurosurgeons during surgery. Once the
HS image of the brain is acquired, the aim of the system
is to assign to each pixel a label representing one of the
following classes: normal tissue, tumor tissue, hypervascu-
larized tissue and background. The surgeon can recognize the
different tissues from the classification map provided by the
system, where each class is represented by a specific color.
A proof-of-concept of this surgical aid visualization tool was
already implemented onto a system based on a combination
between a CPU (Central Processing Unit) and a many-core
platform, obtaining a processing time of ∼1 minute, achiev-
ing an average speed-up factor of 24× [21]. In this work,
the aim is to achieve real-time execution developing a parallel
version of the entire HS brain cancer detection algorithm
onto a multi-GPU system. This manuscript is organized as
follows. In Section II authors describe the acquisition system,
the image database and the test systems used. Moreover,
authors present the serial and parallel versions of the algo-
rithms included in the brain cancer classification system.
At the end, the graphical user interface is briefly described.
In Section III the results are presented and discussed. Finally,
in Section IV authors present the conclusion of this work.

II. MATERIALS AND METHODS
This section describes the database employed to test the
proposed implementations as well as the acquisition system
employed to obtain these data. In addition, the high perfor-
mance processing platforms and the HS brain cancer detec-
tion algorithm used for the implementations are presented and
explained. Finally, the different approaches to parallelize and
implement the algorithm onto the processing platforms are
described.

A. ACQUISITION SYSTEM AND HS IMAGE DATABASE
The developed GPU-based implementations were installed
onto a customized intraoperative HS acquisition system
equipped with a VNIR pushbroom camera (Hyperspec R©

VNIR A-Series, Headwall Photonics Inc., Fitchburg, MA,
USA) [21]. The system is able to capture HS images covering
the spectral range from 400 to 1000 nm, with a maximum
spatial resolution of 1004 × 1787 pixels (129 × 230 mm)
and 826 spectral bands. Since the HS camera is based on the
pushbroom method, it provides high spectral resolution and
relatively high spatial resolution. However, the sensor is only
able to capture the complete spectral dimensions and one spa-
tial dimension of the scene, being necessary a spatial scanning
to obtain the complete HS cube. By shifting the camera’s field
of view with respect to the scene, the second spatial dimen-
sion is acquired. The system includes also an illumination
device capable of emitting cold light in the range between
400 to 2200 nm. A Quartz Tungsten Halogen (QTH) lamp is
connected to the cold light emitter through a fiber optic cable
to avoid the high temperatures of the light in the exposed
brain surface. Using this acquisition system, five HS images
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were obtained intraoperatively at the University Hospital
Doctor Negrin of Las Palmas de Gran Canaria (Spain) from
four different adult patients that underwent craniotomy for
resection of intra-axial brain tumor. The patients had a con-
firmed grade IV glioblastoma tumor by histopathology. The
study protocol and consent procedures were approved by the
Comité Ético de Investigación Clínica-Comité de Ética en
la Investigación (CEIC/CEI) of University Hospital Doctor
Negrin and written informed consent was obtained from all
subjects.

FIGURE 1. Synthetic RGB representations of the HS cubes from (a) P1C1,
(b) P1C2, (c) P2C1, (d) P3C1, (e) P4C1.

Fig. 1 shows the synthetic RGB representation of each HS
cube of the HS brain cancer image database employed in
this work, while Table 1 details the characteristics of each
HS cube, where PXCY stands for Patient X and Capture Y.
These HS cubes can be downloaded in the supplementary
material of this manuscript and the entire database obtained
during the HELICoiD project execution was published in [11]
(open access). The images in Fig. 1 are characterized by
the presence of black rubber ring markers employed for the
pathological assessment of the image labeling. The sterilized
markers were placed by the surgeon in some specific areas,
where he/she was confident to belong to normal and/or tumor
tissue. In this last case, the tumor presence was confirmed
by a biopsy, followed by a histopathological analysis. During
the classification, the markers are assigned to the background
class. Further details about the protocol used for image acqui-
sition can be found on [12].

TABLE 1. Specifications of the HS image database.

B. TESTS SYSTEMS
HSI classification during neurosurgical operations strongly
requires a real-time elaboration. This constraint can be satis-
fied exploiting HPC systems able to elaborate large amount
of data as fast as possible. Since HS images are character-
ized by a high number of information, the hybrid systems
considered in this work are equipped with some of the most
powerful NVIDIA GPUs currently available in the market,
characterized by more than a thousand of processing cores
and large memories. Table 2 presents the characteristics of
the three systems used in these tests.

TABLE 2. CPU and GPU characteristics of the different testing systems.

The GPUs choice has been done aiming at covering a
wide range of manycore architectures, evaluating one spe-
cific board for scientific computations and other two general
consumer GPUs. The Test System (TS) 1 is equipped with
two NVIDIA Tesla K40 GPU, based on the NVIDIA Kepler
architecture (compute capability 3.5). This board is specific
for scientific computation and therefore it does not present a
graphical output. These GPUs are connected to an Intel i7
3770 CPU. On the other hand, the consumer GPUs have
been included in TS2 and TS3. The former is equipped with
an NVIDIA GTX1060 GPU which is based on the Pascal
architecture (compute capability 6.0). In this case the board is
connected to an Intel i7 6700. Finally, TS3 is equipped with
two NVIDIA RTX2080 GPU, based on the Turing architec-
ture (compute capability 7.5), connected to an Intel i9 9900X
CPU. All the boards are connected to their CPU through a
PCI Express 3.0 bus.

C. BRAIN CANCER DETECTION SYSTEM
The classification system (CS) developed in the HELICoiD
project performs a hybrid spatial/spectral and supervised/
unsupervised classification of the HS images acquired during
the surgery. Fig. 2.A shows an overview of the classification
algorithm [12].

FIGURE 2. A) Algorithms constituting the brain cancer detection system.
The HSI cube is the input of the system. It is pre-processed and sent to
the supervised (PCA, SVM, and KNN) and unsupervised (K-means)
classification branches of the system. The results of these two processing
flows are combined with the Majority Voting algorithm. B) Serial
algorithm of the classification system. Black arrows indicate the algorithm
flow and the colored dashed arrows represent data dependencies.
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At first, the image is stored as a raw file that is
pre-processed in order to homogenize the spectral signature
of each pixel. The pre-processed image is the input of the two
main parts of the CS: one performs a spatial-spectral super-
vised classification while the other accomplishes an unsu-
pervised clustering segmentation. Concerning the supervised
classification, the Principal Component Analysis (PCA) algo-
rithm computes a one-band representation of the HS cube,
while the Support Vector Machine (SVM) classifier performs
a pixel-wise supervised classification and generates a 4-class
probability map. The K-Nearest Neighbors (KNN) algorithm
is used as a filter to integrate the PCA and the SVM outputs in
order to improve the results of the spectral classification by
adding spatial domain information [22]. On the other hand,
the unsupervised stage of the CS is based on the K-means
clustering algorithm that creates a segmentation map where
the boundaries of the different spectral regions are well
delineated. Nevertheless, the segmentation performed by the
unsupervised classifier cannot be directly related with the
different tissues or materials that are present in the image.
Finally, the Majority Voting algorithm combines these two
main parts of the CS whose output is the result of the hybrid
classification. Fig. 2.B depicts the serial algorithm of the CS.
The image shows both the flow (black arrows) and the data
dependencies (colored dashed arrows) among the different
steps.

The next paragraphs will provide a more detailed descrip-
tion of each step of the CS, presenting both the serial and
parallel versions of each algorithm. As stated before, a crucial
specification that the system has to satisfy is the real-time
elaboration in order to not slow-down the surgical operation.
In this particular case, the real-time constraint is defined by
a limit of 1 minute, which is the time that the camera takes
to capture the HS image due to the pushbroom capturing
technique. Firstly, a parallel version of each algorithm was
developed, trying to accelerate their highest computational
parts. At the end, these parallel codes have been merged in
order to get the most efficient version of the complete CS. It
should be pointed out that merging the parallel algorithms is
not a simple system integration since it implies some research
challenges. In fact, a simple pipelining of the parallel versions
of the algorithms cannot ensure a real time classification of a
hyperspectral image. The main goal of this work is to provide
a complete parallel system, which efficiently integrates all the
parallel algorithms. To this aim, it is of critical importance to
entirely develop each algorithm keeping in mind that it will
be part of a more complex system.

1) PRE-PROCESSING CHAIN
The captured HS image could present significant signal vari-
ations due to a non-uniform illumination within the brain
surface. Thus, the pre-processing algorithm aims to correct
these differences and to homogenize the spectral signatures
of the in-vivo HS cubes [23]. The pre-processing chain is
based on three main steps: image calibration, band and noise
reduction and data normalization.

To correct the signal variations of the input data, in the cal-
ibration phase, white and dark reference images are acquired
in the same operating theatre and with the same illumination
conditions where the HS cube will be captured. The white
image is obtained by using a white standard reference tile
while the black one is obtained by keeping the shutter camera
closed. The calibrated image (CI in (1)) is computed as
follows:

CI = 100×
RI − DR
WR− DR

(1)

where RI is the input raw image and,WI and DI are the white
and dark reference images [23].

Once the HS image is calibrated, a band reduction is per-
formed in order to remove the extreme noisy bands that do
not provide useful information due to the sensor underperfor-
mance.Moreover, it has been observed that consecutive bands
provide redundant information, due to the extremely high
spectral resolution. For this reason, the reflectance values of
seven contiguous bands are averaged every five bands: the
reduced HS cube is characterized by 128 bands [9]. This
reduction allows saving computational time and memory due
to the diminished number of data to elaborate.

The last phase of the pre-processing chain is the data nor-
malization needed to avoid different extreme radiation inten-
sity levels between the pixels captured at different heights.
This fact could produce a classification based on the pixel
brightness without actually taking into account its spectral
signature. For this reason, the pixel normalization is per-
formed to obtain the spectral signature amplitude of each
pixel between 0 and 1.

The flow of the pre-processing algorithm parallel code
(Fig. 3.B) presents three steps. Starting on the host, where
the input image and the white and dark images are read
and stored, data are then transferred to the device where the
pre-processing chain can start with the calibration (1stphase
in Fig. 3.B). It is important to highlight that the data transfer
from host to device is managed using the CUDA streams [24],
which allow to overlap the data transfers and the operations
performed on the device. In this case, a suitable number of
streams is created. Each stream manages the transfer of a row
(i.e. the current frame acquired by the camera) and the com-
putation of the calibrated image is performed exploiting the
cuBLAS library (NVIDIA) which includes highly optimized
linear algebra routines [25]. Once the row transfer is com-
pleted, the cuBLAS function can start the computation with-
out waiting for the transfer of the following row. In this way,
the computational time is reduced compared to a serial elabo-
ration. Once the image is calibrated, the following two phases
can start. A custom kernel performs the normalization while
the band reduction is done sending to this kernel only the final
bands that have to be considered. In this way, these two phases
(2nd and 3rd phases in Fig. 3.B) are performed concurrently.

2) PRINCIPAL COMPONENT ANALYSIS (PCA)
Despite being characterized by a large amount of data, even
after the reduction obtained with the previous step, the HS
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FIGURE 3. Flow diagram of the complete system parallel code on single
device (CS-Single). The black arrows indicate the flow of the algorithm,
the green ones represent the pre-processed image sent as input to the
different algorithms. The red arrows indicate the data transfers. CUDA
streams indicates that the transfer from host to device is performed
exploiting streams to overlap data transfer and computation. A) Variables
declaration and initialization. B) Pre-processing. C) PCA dimensional
reduction. D) SVM classification. E) KNN filtering. F) K-Means
segmentation. G) Majority Voting.

image dimensionality can be decreased even more through
the PCA algorithm. This technique converts the original data
into a new subspace, selecting and accumulating the most

important information in the first bands [26]. PCA reduces
those data by computing the covariancematrix of the HS cube
and its eigenvector decomposition. Then the image is pro-
jected into the sub-space described by these eigenvectors and,
at the end, the principal components or bands are selected.

The serial implementation of the PCA algorithm is orga-
nized in sequential steps [26]: after the variables declaration
and initialization, the algorithm computes the transpose of the
input matrix YN×M , where N is the number of pixels and M
is the number of bands. This step continues computing the
average of the elements present in each row of Y T . Then, each
average is removed from each element of the corresponding
band, i.e. the row of the matrix Y T , obtaining a new X matrix.
The covariancematrixCM×M is then computed as the product
between the matrix XM×N , output of the previous step, and
its transpose. In the next step, the eigenvectors E , associated
with the covariance matrix C , are extracted exploiting the
Jacobi method, a fast algorithm capable of extracting the
eigenvectors while computing the input matrix eigenval-
ues [26]. Then, the algorithm performs the projection of the
input image onto the set of the extracted eigenvectors. Finally,
the first P principal components are selected in order to
obtain a matrix with reduced dimension N×P. In this work,
the output consists in an array whose dimension isN×1, since
only one principal component is selected.

The serial code profiling showed that the most consuming
part of the algorithm is the covariance matrix computation,
which takes more than the 70% of the serial execution pro-
cessing time. In order to reduce the computational time of
the algorithm, two parallel versions have been developed.
In these codes, not only the covariance matrix computation
is performed on the GPU. In order to accelerate all the stages
of the algorithm, the whole computation is carried out by the
device. The difference between the two versions (PCA1 and
PCA2) is in the part where the eigenvector computation is
elaborated.

In fact, in PCA1, this step has been computed exploiting a
suitable function of the cuSOLVER library [27] (developed
by NVIDIA), capable of reproducing the Jacobi method.
After a code profiling it has been noticed that the eigenvectors
computation takes longer on the GPU than on the host. For
this reason, PCA2 has been developed and the eigenvector
computation has been moved back on the host.

Both versions start with the GPU memory initialization,
included in the 1st phase of Fig. 3.A. The pre-processed
image, already stored in the GPU global memory, is taken
as input from the pre-processing (green dashed line in Fig. 3).
The transpose of the input matrix is computed (Y T ) exploiting
the cublasSgeam routine, belonging to the cuBLAS library.
Then, two main operations are performed: the average com-
putation of each row of the matrix Y T and the subtraction of
these averages from each element of the corresponding rows
(1st phase in Fig. 3.C). The first task is evaluated exploiting
the highly optimized function cublasDasum that belongs to
the cuBLAS library [25]. In this case, a number of streams
equal to the number of bands (i.e. the number of rows of the
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matrix) is created. Each stream manages the mean computa-
tion of its elements through the cublasDasum function. After
that, all the averages are computed and subtracted from each
element of the related row. This computation is performed by
a custom kernel. Furthermore, in this case, each stream man-
ages the call of the kernel which removes the average from
each element simultaneously. This kernel is characterized by
a grid whose dimension is computed as the ratio between the
number of pixels and the number of threads in a block (i.e.
32 in this case). The output of the PCA 1st phase is the matrix
XM×N . X represents the 2nd phase input where the covariance
matrix C is computed. This step exploits another function of
the cuBLAS library, cublasDgemm, which allows computing
the product between two matrices. The end of the 2nd phase
is characterized by another custom kernel which simultane-
ously divides each element of the covariance matrix C by
the number of pixels. In the case of the PCA1 version, the
code starts to compute the eigenvectors on the device using
the syevj routine of the cuSOLVER library. In order to use
this routine, some variables and arrays have to be declared
and initialized. These variables, together with the covariance
matrix, are the inputs of the function which returns the sorted
eigenvectors matrix (phase not shown in Fig. 3.C). On the
other hand, PCA2 computes the eigenvectors on the CPU
and, for this reason, the covariance matrix is transferred from
the device to start the eigenvectors computation on the host
(3rd phase). Moreover, in PCA2, after this step, the 5th phase
is anticipated compared to the serial version in order to select
the principal components P on the host. In this way, only the
eigenvectors related to these principal components are copied
from the host to the device in order to reduce the transfer time
and thememory occupancy. At this point, in both versions, the
projections are computed as described before exploiting the
cuBLAS functions (4th phase in Fig. 3.C). Finally, the PCA
result (in our case a one-band representation of the HS cube)
is stored on the GPU global memory.

Table 3 shows the elaboration times of the serial PCA
algorithm and the two parallel versions (PCA1 and PCA2),
together with the related speed-up (between brackets).
In particular, for each parallel code, the table provides the
time related to the elaboration of the whole code (‘‘Parallel’’
column) and the one related only to the steps of the algorithm
(‘‘Steps’’ column). In this last case, not all the phases present
both in PCA1 and in PCA2 are considered in the measure
of the time. In fact, the time related to the CUDA context
creation, to the first and last transfers and to the initialization
of the variables is not taken into account since it is the same
in both versions. In this specific analysis, the aim is to select
the fastest PCA code to be included in the complete system.
For this reason, it is important to focus on the time of the
stages since the steps of the CUDA context creation or the
initialization will be executed once for the entire complete
system. As stated before, the only difference between the
stages of the two PCA versions is the eigenvectors com-
putation, managed by the device in the PCA1 case and by
the host in PCA2. Table 3 shows that both parallel versions

TABLE 3. Elaboration times of the serial, pca1 and pca2 versions
exploiting the three test systems.

achieve a speed-up compared to the serial implementation.
Moreover, it is possible to highlight that the PCA2 code
is the fastest, considering all the test systems. Focusing on
the ‘‘Steps’’ column, which is the different part of the two
implementations, it is possible to notice that the eigenvectors
computation on the host is more efficient than the use of the
cuSOLVER routine on the device.

In ths specific case, the data transfers and the computation
on the host are faster than the cuSOLVER context creation
and computation on the device. Despite the increased number
of transfers, the PCA2 version resulted to be the fastest one
and, for this reason, it is the one included in the complete
system parallel codes and whose flow is shown in Fig. 3.C.

3) SUPPORT VECTOR MACHINES (SVMS)
The SVM classifier is a machine learning technique that
computes the probability of a pixel to belong to each different
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class under study. The pixel will be assigned to the class with
the highest probability. In our case, the SVM classifier output
is not the label that represents the class but a probability map
that contains the likelihood of each pixel to belong to each
one of the four defined classes. This output will be one of the
inputs of the KNN algorithm, which is the following step. The
SVM classifier was selected for the brain cancer detection
system because it provides good performance for HS data and
in the present experiment conditions: limited training dataset
and real-time constraint [12], [28].

The SVM algorithm is composed of two main parts:
training and prediction. Since the SVMperforms a supervised
classification, a labeled dataset is needed in order to train the
model which will be used in the prediction phase. This dataset
was obtained following the procedure explained in [12]. The
training phase of the SVM classifier was developed using
MATLAB R©, exploiting the LIBSVM library [29]. It is not
included in this work since it is an offline step of the sys-
tem: the idea is to previously generate the supervised model
and, then, send it as an input of the prediction part of the
algorithm. The SVM algorithm faces a multiclass problem
with a one-against-one or binary strategy: each pair of classes
is evaluated in order to find the best hyperplane that separates
their elements in the multidimensional space. The number of
binary evaluations, and so the number of the computed linear
hyperplanes, depends on the number of classes considered in
the classification.

The SVM prediction algorithm inputs are the samples to be
classified, a set of support vectors, the bias, and the sigmoid
function parameters. After all these variables are read and
stored, the algorithm elaborates two steps for each pixel.
The former firstly computes the distance between the sam-
ple (i.e., the pixel) and the considered hyperplane, and then
estimates the binary probability of the pixel to belong to the
two classes under study. The latter computes the multiclass
probabilities starting from the binary ones elaborated in the
previous step. In particular, a for loop iteratively refines the
values of the probabilities of a pixel associated with a class.
The value of each probability is incrementally modified as
long as the difference with the value of the previous itera-
tion is under a certain threshold or if the maximum error is
reached. When one of these two cases is verified, the mul-
ticlass probabilities of the sample are computed. Both the
threshold and the error can be set by the user and, for this
reason, they are provided as input to the algorithm.

The SVM output is a probability map containing the mul-
ticlass probabilities of all the samples, which are the pixels of
the HS image. It is important to underline that the probability
computation is evaluated independently for each sample: this
will be an essential aspect in developing a fast pixel-wise clas-
sification. Even if the analysis conducted on the serial SVM
results proves that it is a highly optimized algorithm, since its
computational time is very low, a parallel version of this algo-
rithm has been developed to alleviate the host load and reduce
data transactions. In the parallel implementation, the classi-
fication of multiple pixels can be computed simultaneously.

The reason is that a parallel version of this classifier could
be very useful in the development of the complete system by
avoiding some data transfers. In fact, if the complete system
will perform the PCA and the KNN on the device, performing
even the SVM on GPU could be more efficient thanks to
the fewer I/O transfers from the host to the device and vice
versa. The fact that the multiclass probability computation is
independent for each sample eases the development of the
SVM parallel version.

The flow of the SVM parallel code is shown in Fig. 3.D.
The inputs acquisition and the variables declaration and ini-
tialization are performed on the host (Fig. 3.A). In partic-
ular, all the outputs of the SVM training phase are stored
in a linear matrix in order to perform a fast and effi-
cient transfer (red dashed line from 1st phase (A) to SVM
1st phase (D) in Fig. 3). Moreover, the other SVM input, i.e.
the pre-processed image, is already stored in the GPU global
memory.

In this parallel version, the 1st phase of the algorithm is
split in two steps: the former computes the distance between
the sample and the hyperplane, and the latter elaborates
the binary probabilities. The computation of the distance
between the sample and the hyperplane is performed by a
cublasSgemm function of the cuBLAS library. Then, the last
part of the 1st phase and the 2nd phase can be pixel-wise
parallelized: it is possible to create a custom kernel that
simultaneously computes the binary and the multiclass prob-
abilities for each pixel. Also in this case, the kernel is char-
acterized by a grid whose dimensions are given by the ratio
between the number of pixels and the number of threads. Each
thread computes the multiclass probability of a single pixel.
When this probability is updated, its final value is stored in a
probability map on the GPU global memory.

4) K-NEAREST NEIGHBORS (KNN) FILTER
Recent uses of the KNN algorithm show that it is not
restricted to a classification role, but it can also be used as
a filtering technique [22], [30]. In the present work, this algo-
rithm improves the spectral classification results by adding
spatial information. In this scope, the KNN filter receives as
input the probability map generated by the SVM classifier
and the one-band representation of the HS image generated
using the PCA algorithm. Considering each pixel of the HS
image, the KNN performs a nearest neighbor searching step
and a filtering step.

Concerning the first part, the nearest neighbors of a pixel
are searched in a feature space that contains the pixel values
and the spatial coordinates (2). In this equation, I (q) is the
normalized pixel value of the one-band representation and
l(q) and h(q) refer to the normalized coordinates of pixel q.
The parameter λ controls the balance between the pixel value
and the spatial coordinates. For example, the spatial infor-
mation is not considered when λ is equal to zero. Otherwise,
if this value is higher than zero, more influence is given to the
local neighborhood [30].

F (q) = (I (q) , λ · l (q) , λ · h (q)) (2)
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The process of finding the K nearest neighbors for each
pixel involves the computation of its distance from the other
pixels of the image. Authors in [22] have evaluated different
distance metrics, finding that the Euclidean distance is the
most suitable for this application; therefore, this metric is
adopted in this work. For each pixel, the K nearest neighbors
are selected after the distances have been sorted. Once the
neighbors’ selection is over, the filtering step can start. Taking
into account the probability map Pc obtained by the SVM
classifier, a set of new optimized probabilities for each pixel
is computed as shown in (3).

O (q) =

∑
Pc(s)
K

, s ∈ wq (3)

For each pixel, the algorithm computes a number of prob-
abilities O equal to the number of SVM classes, which are
four in this work. In (3), wq indicates the nearest neighbors
of the pixel q, s is the index related to each neighbor and K
is the number of neighbors searched for each pixel [22]. The
last step consists of assigning a label to each q corresponding
to the highest value among the four optimized probabilities
O computed for each pixel. In this way, a new classification
map is computed.

It is important to highlight that the K nearest neighbors’
selection is the most consuming part of the code from a
computational point of view. For this reason, in [22] an
optimization is introduced in order to save memory and exe-
cution time. Instead of searching the neighbors within the
entire image, the selection is done inside a search window,
i.e. a region that surrounds the pixel. The use of a smaller
searching area is possible due to the values that authors
in [12] assumed for the variables λ and K, which confer
more importance to the pixel local neighborhood. For this
reason, the probability to find neighbors near the pixel is
higher than the probability to find smaller distances in further
zones of the image. Several analyses were performed looking
for a window dimension that produces the same (or almost
the same) results as searching the neighbors in the whole
image. The window, selected as a reference, surrounds the
pixel in a symmetric way and it is characterized by a number
of rows (WSize) of the image equal to 14 and by a number of
pixels equal to 14 rows × total number of columns. Authors
in [22] have also evaluated different windows sizes in order
to find a good compromise between the number of distances
computed for each pixel and the final KNNfiltering accuracy.
In addition, the authors have introduced a GPU version of the
KNN algorithm whose flow is included in Fig. 3.E.

The basic idea followed in the development of the parallel
version is that each CUDA core has to assign a label to each
pixel simultaneously. The declaration and initialization of all
the variables are performed on the host. The first step of the
KNNfiltering algorithm on the GPU device concerns the exe-
cution of a kernel that evaluates the borders and the size of the
windows in parallel through the pixels (1st phase in Fig. 3.E).
In fact, in the parallel version is very important to define the
window size for each pixel before the distance computation

and the filtering. In this way each thread can copy, from the
global to the shared memory of the GPU, only the PCA and
SVM outputs that are required in the computations. Then,
the results are copied to the global memory only at the end
of the kernel execution. This step is crucial to decrease the
execution time since the accesses to the global memory are
very slow. In the 2nd phase and in the 3rd phase each thread
evaluates in parallel the K nearest neighbors and the updated
probability of a pixel, respectively [22]. The kernel of the
2nd phase needs the PCA one-band representation to compute
the distances between the pixels. Once this step is concluded,
the filtering kernel (3rd phase) starts computing the optimized
probability of each pixel for each class, taking into account
the SVM probability map. Once the KNN algorithm execu-
tion ends on the GPU device, an array containing the labels
of all the pixels is transferred to the host to be used in the
Majority Voting algorithm, together with the K-means output.

5) K-MEANS CLUSTERING
The K-means algorithm performs an unsupervised classifi-
cation since a labeled dataset is not needed. The algorithm
generates groups, called clusters, separating tissues andmate-
rials present in the HS image, on the base of their spectral
similarity. Each cluster centroid represents the spectrum
of a particular material present in the image. The serial
and parallel versions of this algorithm have been already
presented in [10].

The serial algorithm starts with the random initialization
of the KC centroids, where the number of centroids KC is
given as input. Then, the algorithm iteratively evaluates the
distances of the pixels with each centroid and assigns that
pixel to the cluster with the lowest distance. Next, the cen-
troids are updated. These two steps are repeated until one
of the two stopping criteria is satisfied. The former is about
an error threshold, the latter is related to a maximum num-
ber of iterations: both these data are given as inputs. The
suitable values for these inputs have been experimentally
found in [10]. The output is a segmentation map showing
different clusters characterized by several colors but without
any explicit meaning. In this system, the K-means is used to
delineate the boundaries of the different spectral areas present
in the HS image. Due to the high number of clusters used (25)
and the richness of spectral information, the boundaries of the
tissues are better delineated than when using the SVM with
only four classes.

The parallel flow, shown in Fig. 3.F, starts on the host
where the 1st phase is performed and the centroids initializa-
tion is transferred to the device. Authors choose to initialize
the centroids on the host because it is more efficient. In fact,
the number of centroids to initialize is low (in this work
it is 25); moreover, it is important to ensure that all the
centroids are initialized at different values. Performing these
operations on the device is not convenient because it would
be necessary to use the cuRAND library and to check
with a serial kernel that the generated values are different.
This will affect the algorithm performance since the library
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initialization takes time and the serial check of the initial
values is not efficient on the device. A while-loop condition,
evaluating the error and the number of iterations, is performed
by the CPU. If the condition is true, the flow continues on the
device where each thread of the kernel computes the distances
between the pixel and all the centroids (2nd phase).Moreover,
each thread performs the cluster assignment for the pixel.
The cluster centroids update, in the 3rd phase, is computed
by a simple kernel where the i-th thread manages the i-th
centroid update. Once the update is completed, the variation
between the previous and the actual centroids is evaluated
exploiting the cublasSasum routine (cuBLAS library). This
value is transferred to the host (red dashed arrow) to compute
the error and to increment the iterations number (4th phase).
When the stopping criterion is satisfied, the flow proceeds
with the last step of the classification system.

6) MAJORITY VOTING
The brain detection system presented in this work performs
a hybrid classification, exploiting both the supervised and
unsupervised learning outcomes. The first one provides a
classification map in which each pixel belongs to a class:
this map is obtained by exploiting the diagnosis information
provided by the neurosurgeons and pathologists. Even if this
kind of output assigns a label to each pixel, it does not provide
an accurate delineation of the tumor area. On the other hand,
the unsupervised classification provides a good association
of similar areas in the image, even if the clusters cannot be
directly related to the materials or types of tissue that are
present in the image. These two approaches are computed
independently but their results have to be merged in order to
exploit their advantages and to obtain a final classification
map. The Majority Voting is the approach selected to join
these outputs, already used by authors of [13] and [31]. The
two maps are merged to obtain the final hybrid result which
shows each pixel belonging to a specific group, assigned on
the base of the class of the supervised classification, also
taking into account the clusters obtained by the unsupervised
classification map [12].

D. PARALLEL VERSIONS OF THE COMPLETE SYSTEM
In the previous paragraphs, the parallel versions of all the
algorithms that are part of the brain cancer detection system
have been presented. The aim of this section is to explain
how these algorithms have been merged exploiting the
single-GPU and the multi-GPU paradigms in order to obtain
the most efficient version of the system. The goal is to reach a
real-time classification that, in this particular case, is defined
by a limit of 1 minute. It is worth noticing that the develop-
ment of the complete system parallel versions is not a simple
algorithms integration. In fact, some issues have to be consid-
ered. A crucial role is covered by the memory management:
firstly, memory allocations and transfers take into account
the data path of the whole system, exploiting data depen-
dencies in order to avoid multiple or redundant transfers.
Moreover, a well-balanced computational load is mandatory,

considering the system integration in themulti-GPUs version.
The final parallel version represents the best configuration of
memory allocations, data transfers and computational load of
each algorithm for this particular application.

The serial flow of the complete system sequentially elabo-
rates all the serial algorithms, as presented in Fig. 2.B. As it
will be discussed in the Section III, this serial version of
the complete classification system does not satisfy the real-
time requirement. For this reason, the use of GPU technology
is required to reduce the classification computational time.
Three parallel versions have been developed: the first one
exploits a single-GPU system, while the other two versions
run on a multi-GPU system.

1) SINGLE-GPU PARALLEL VERSION (CS-SINGLE)
The first parallel version (CS–Single) of the brain cancer
detection system is characterized by the execution of all the
algorithms in cascade on the device (Fig. 3). The processing
flow starts on the host where the input HS image and the other
variables are declared and initialized. The user can set some
input parameters in the graphical user interface (GUI), such
as the number of neighbors K , the metric used in the distance
computation, the WSize that concerns the KNN algorithm,
themaximumnumber of iterations, the error threshold and the
number of clusters KC that concerns the K-means algorithm.
The GUI (described in detail in Paragraph E) provides some
default value of these variables, but the user can modify them.
The HS image and all these variables are read and stored
in the CPU memory and transferred on the device for the
computation.

The other type of inputs is independent from the user:
in fact, the white and dark calibration matrices and the vari-
ables belonging to the SVM model generated by the SVM
training phase are also read, stored and transferred to the
device. Once the data transfer is completed, the GPU param-
eters and variables are declared. For example, in this step,
the handle used in the cuBLAS routines and the streams used
in the pre-processing are created. Furthermore, the grids and
blocks dimensions of the kernels are defined. Once the GPU
initialization is completed, the pre-processing starts.

As explained in the Pre-processing paragraph
(Section II.C), the white and dark matrices and the input
image are transferred exploiting CUDA streams. Once the
HS image is pre-processed, it is stored in the GPU memory
and it is transferred to the host since it is used for the clusters
initialization (K-means algorithm) performed on the CPU
(green dashed lines in Fig. 3). The processing flow contin-
ues with the PCA and SVM algorithms whose input is the
pre-processed HS image stored in the GPU global memory.
Their outputs (the one-band representation of the HS image
and the 4-class probability map) are stored in the GPU
global memory to be used in the 2nd and 3rd KNN phases
respectively.

The flow continues with the K-means algorithm,
performed both on the host and on the device. Finally,
the KNN and the K-means outputs are transferred to the
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host for the Majority Voting computation. The RGB hybrid
classification map, i.e. the system output, is shown to the
user through the GUI. As it will be presented in Section III,
this single-GPU version of the complete system classifies the
hyperspectral image, even in the worst case, in less than half a
minute, satisfying the targeted real-time constraint. To further
reduce the computational time obtained with the single-GPU
code, two differentmulti-GPU versions have been developed.

2) MULTI-GPU PARALLEL VERSION 1 (CS-MULTI1)
Analyzing the flows of the codes presented above, there
are parts that could be executed simultaneously. For this
reason, in this implementation, the idea is to execute these
parts on different GPUs that work in parallel. In order to
manage two boards in parallel, two sections (generated with
the OpenMP API [32]) are created. Each one is characterized
by a CPU-thread that manages the memory initialization,
the variables declaration, the kernels launch and the data
transfers of each board.

FIGURE 4. Flow diagram of the parallel code of the multi-GPU parallel
version 1 (CS-Multi1) of the complete HS brain cancer detection
algorithm.

The workflow of the first CS multi-GPU parallel version
(CS-Multi1) is shown in Fig. 4. As in the CS-Single version,
the variables declaration and initialization are performed
on the host. The inputs are transferred to one of the two
boards (in this case the Device 0) where the pre-processing
is performed. The pre-processed HS image is stored in the
Device 0 global memory and it is also transferred both to
the host, for the clusters initialization in the K-means, and to
the other device (Device 1), for the K-means computation on
GPU (red dashed lines). This transfer between devices is pos-
sible thanks to the GPUDirect technology [33], which allows
devices to read and write CUDA host and device memory,

avoiding unnecessary memory copies. In order to transfer
data from the memory of one device to another, the first
step consists in enabling the current GPU (in this case the
Device 0) to access addresses of the Device 1. The function
that allows this task is the cudaDeviceEnablePeerAccess.
Then, the copy of the pre-processed image is performed by
the function cudaMemcpyPeerAsync. Once the pre-processed
image is transferred to the host and to the other device, a par-
allel section is opened exploiting the OpenMP statements
(light blue box in Fig. 4), as shown in Algorithm A.

Algorithm A Parallel Sections Opening Pseudo Code

1: #pragma omp parallel sections
2: {
3: #pragma omp section
4: {
5: In this section the thread 0manages the Device

0 and performs the PCA, SVM and KNN.
6: }
7: #pragma omp section
8: {
9: In this section the thread 1 manages the

Device 1 and performs the K-means.
10: }
11: }

The execution is divided into two sections, each one
assigned to a different thread. Each GPU is associated to
a thread through the function cudaSetDevice. In this way,
the thread 0 (Section 0) manages the Device 0 and thread 1
(Section 1) manages the Device 1. The CPU-threads work in
parallel to compute simultaneously the different algorithms
presented in the two previous sections. On the one hand,
the thread 0 manages the PCA, SVM and KNN computation
in the same way described for the single-GPU code: the
PCA is executed on the Device 0, except for the eigenvectors
computation executed on the host. The SVM is also executed
on the same GPU and its output, together with the PCA
output, is sent to the KNN, also executed on this device.
The KNN output is transferred to the host through a cud-
amemcpy function managed by the thread 0 (red dashed lines
from KNN to Majority Voting in Fig. 4). On the other hand,
the thread 1 computes the K-means Clusters initialization
on the host, transferring then the clusters centroids to the
Device 1where the other steps of the K-means are computed.
At the end, the output is transferred to the host (red dashed
lines fromK-means toMajority Voting in Fig. 4). At this point
the parallel section is closed and the computation is managed
only by one thread. The Majority Voting is performed on the
host and the new classified image is displayed. It is worth not-
ing that the algorithm division among the devices, performed
in the multi-GPU versions, is based on data dependencies.

3) MULTI-GPU PARALLEL VERSION 2 (CS-MULTI2)
The second multi-GPU version is called CS-Multi2 and it
differs from the previous one in the point where the parallel
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FIGURE 5. Flow diagram of the parallel code of the multi-GPU parallel
version 2 (CS-multi2) of the complete HS brain cancer detection
algorithm.

section is generated. As it is possible to see in Fig. 5, the
variables declaration and initialization are always performed
on the host. After this phase, the parallel section is created in
the same way described in Algorithm A. The main difference
compared to the CS-Multi1 is that, since the pre-processing
computation is performed in both devices, each GPU requires
the initial data. For this reason, there is a double transfer
of the initial data, one managed by the thread 0 for the
Section 0 and the other one by the thread 1 for the Section 1.
The code in each section can be executed in parallel: each
thread manages the data transfer to its device where the
pre-processing phase can start. After this step, in Section 0,
the PCA, SVM and KNN are computed as explained before.
In Section 1, the pre-processed image is transferred from the
Device 1 to the host in order to compute the first part of the
K-means. Then the computation continues on the device as
described above.

In this case, there is no need of a GPU-GPU transfer
since each device computes a pre-processing phase, so the
pre-processed image is already stored in the global memory
of each GPU.

E. GRAPHICAL USER INTERFACE (GUI)
In order to manage in a user friendly way the different system
versions developed in this work, a specific GUI was devel-
oped to be installed in the HS intraoperative demonstrator
for real-time processing of the captured data in surgical brain
procedures. The source code implementation of the GUI
has been written in C/C++ language. The project is set up
in a hierarchical structure (Fig. 6), identifying three main
modules: I/O Interface, Processing System, and Graphical
User Interface.

FIGURE 6. Hierarchical pattern tree of the brain classification system.

The I/O Interface provides a communication channel
between the user and the system, allowing the information
exchange. In particular, the Input channel includes all the
classifiers inputs and parameters divided in five components.
The Output part contains the classification maps (Results)
and a .txt file with all the main information about the exe-
cution (Log). The Processing System module presents three
main components, each one related to the platform used in
the elaboration: the Serial version, the single-GPU and the
multi-GPUs codes. The Graphical User Interfacemodule
manages five interaction screens. The main panel is shown
in Fig. 7.A, where in the top-left side three buttons have been
placed (to load the image, to change the parameters and to
start the classification) and a drop-down list, which shows
the types of computation that the user can choose on the base
of the technology that he/she wants to exploit. The system
is flexible enough to be executed on different platforms. For
this reason, the user can select a serial computation per-
formed by a CPU or a parallel computation performed by a
single or a multi-GPU technology. Pressing the load button,
the user opens the load panelwhere it is possible to select the
HS image to classify. If the parameters button is pressed,
the window shown in Fig. 7.C is opened (parameters panel).
This window presents all the parameters of the different
algorithms described above with the default values. The user
can choose to change these parameters and try new system
configurations. After choosing the new system configuration,
the user can upload the image (Fig. 7.B) and decide whether
to classify the whole image or only a part of it (crop panel).
When the button process is pressed, the computation starts.
The classification result is shown in the right part of the
main panel (Fig.7.A). Finally, the command line shows the
execution status.

Typically, a system like the one presented requires a tool
that provides an excellent usability even to those who are not
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FIGURE 7. Graphical User Interface of the HS intraoperative demonstrator. A) Main panel; B) Crop panel; C) Parameter configuration panel.

familiar with computer science details. Therefore, the GUI
has been developed following the surgeons’ suggestions in
order to provide an ease of use and intuitive interface. As an
example, the dark theme was chosen since it is more suitable
for the surgical room. During the neurosurgery, the user
has only to follow three simple steps to start the classifica-
tion (i.e., load the image, select the region of interest and
press the process button). For this reason, during the surgical
procedure, the user mainly works with the panel in Fig. 7.A.
The parameters panel (Fig. 7.C) is mainly used for research
purposes and not during the tumor resection. This GUI is
currently used in the demonstrator located at the Doctor
Negrin Hospital of Las Palmas de Gran Canaria.

III. RESULTS AND DISCUSSION
The development of an optimized version of the brain
cancer detection system required several steps and analysis
before reaching an efficient version capable of satisfying the
real-time constraint. As described in the previous sections,
the first step of the work has been the development of the
optimized versions of the algorithms that compose the HS
brain cancer detection system.

FIGURE 8. Average processing times of the single algorithms exploiting
the TS1, TS2 and TS3 systems. Time shown in milliseconds and in
logarithmic scale.

The chart presented in Fig. 8 shows the average processing
times of the serial and parallel algorithms exploiting the three

test systems. For each of them, it is possible to notice that the
KNN and the K-means are the algorithms with the highest
computational load, while the SVM is the faster one. The
main aspect that should be noticed is that all the parallel ver-
sions present a considerable reduction of the execution times,
which facilitates the achievement of a real-time elaboration.
The TS3 system reaches the best results if the parallel codes
are considered.

Several strategies and implementations have been
described above but, according to the results shown in Fig. 8,
it is possible to conclude that the GPU technology, together
with an efficient design of the algorithm codes, allows
reaching high speed-up factors and saving computational
time. Right after the choice of the best solution for each
algorithm, it has been studied the most efficient way to gather
all these versions together in order to develop a highly opti-
mized hybrid classification system, exploiting both single and
multi-GPU technologies. Table 4 shows the comparison
between the computational times of the parallel versions
and the serial ones, presenting also the obtained speed-up.

TABLE 4. Serial and parallel processing times and speed-up.
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Best result for each image has been highlighted in boldface.
The different versions have been tested on three different
processing systems that have been presented in Section II.B.
TS1 and TS3 are multi-GPU systems, containing two GPU
boards each one. For this reason, they have been exploited to
test both the single and multi-GPU versions.

An analysis of the results shown in Table 4 reveals that
all the parallel versions classify the HS images in less than
one minute, meeting the real-time constraint for this intraop-
erative application. As far as the serial processing times are
concerned, they can take more than 10 minutes to classify the
images in some cases. Indeed, a serial code profiling shows
that the KNN and the K-means algorithms have the higher
computational loads, causing the non-compliance of the
real-time constraint. In fact, the KNN takes the 20% - 39%
of the total processing time (considering all the images and
all the systems) while the K-means takes the 55% - 86% of
the total time. On the other hand, the pre-processing, PCA
and SVM are very efficient algorithms considering that the
processing of each of them takes less than the 1% of the total
time.

Analyzing the speed-up obtained between the CS-Single
versions and their corresponding serial codes, it can be
noticed that the best performing device is the NVIDIA
RTX 2080 (TS3), achieving a maximum speed-up factor of
about 170×. This result is obtained due to the more effi-
cient recent architecture, the highest clock frequency and
the largest number of CUDA cores that characterize this
board. It is also interesting to notice that the NVIDIA GTX
1060 board (TS2) reaches higher speed-up than the NVIDIA
Tesla K40 (TS1), even if it has lower number of cores. On the
other hand, the GTX 1060 board benefits from a more recent
architecture and a higher working frequency, which allows
it to reach speed-up factors of about 100×. The consistent
reduction of the CS-Single classification times is mainly
due to the efficient parallelization of the most consuming
algorithms (KNN and K-means). In fact, in this first parallel
version, the KNN takes only 0.71 s compared to the 161.26 s
of the serial code, when the biggest image (worst case)
and TS3 are considered. In addition, the K-means algorithm
presents a meaningful processing time reduction: the parallel
clustering takes 0.88 s instead of 326.72 s in the serial code
(always considering the biggest image and the TS3). Despite
the pre-processing, PCA and SVM are developed with very
efficient serial codes. Their processing times have been
also reduced in the parallel version, increasing the speed-up
factor of the entire classification. It is worth noticing that
the CS-Single version performs a very fast classification,
elaborating the biggest image of the database (P1C2) in
only 2.82 s when the TS3 is used.

Despite the single-GPU version allows a significant reduc-
tion of the computational times of the serial code, the most
performant parallel solutions are the ones that exploit
the multi-GPU technology. Thus, in this case, the super-
vised and the unsupervised classifications are distributed
on two different GPUs, executing the two most consuming

time algorithms, KNN and K-means, on the two boards
simultaneously. The obtained gain in the total classification
time is strictly related to the K-means performance, since this
is the algorithm moved to the second GPU and elaborated
simultaneously to the KNN.

Analyzing Table 4, it is possible to see that the gap
between the CS-Single and the CS-Multi1/2, elaborated with
the TS3, is lower than the one obtained with the TS1. The
reason is mainly the different K-means processing times
obtained with the NVIDIA RTX 2080 and the NVIDIA Tesla
K40 GPUs. As said before, considering the P1C2 image,
the RTX 2080 takes only 0.88 s to process the K-means,
compared to the 5.31 s of the Tesla K40. For this reason, there
is a higher time decrease between the single and multi-GPU
versions in TS1 than in TS3.

Fig. 9 presents several chronograms, where the algorithm
processing times in the CS-Single and CS-Multi1 versions
elaborated by the TS1 (Fig. 9.A and B) and by the TS3
(Fig. 9.C and D) are detailed. It is possible to consider that
the K-means bar follows the KNN one in the CS-Single
graphs (Fig. 9.A and C), while in the CS-Multi1 graphs
they are overlapped since the computation is performed by
two GPUs simultaneously. Moving the K-means to a second
board allows obtaining a temporal gain (red arrows in Fig. 9)
which is higher in TS1 than in TS3 for the reason explained
before. Despite this, TS3 achieves the fastest classification
since it features a more efficient algorithms parallelization
than TS1. Thus, TS3 takes only 2.67 s to classify the image
P1C2 (CS-Multi1), while TS1 takes 15.99 s.

Analyzing the results of the TS3 system, another consider-
ation that can be done is that for the three smallest images
of the database (P2C1, P3C1 and P4C1) the multi-GPU
algorithms are slightly slower than the single-GPU. This is
mainly due to the OpenMP context creation andmanagement,
present in the multi-GPU versions, which affect most the
performance of the smallest images.

In addition, data reported in Table 4 highlight that the two
multi-GPU versions results are not significantly different.
This means that, for this type of systems, performing two
pre-processing steps (one in eachGPU) takes almost the same
time than computing only one pre-processing and transferring
the pre-processed image through a GPU-GPU data transfer.
In fact, the profiling of the parallel code shows that data
transfers are not so relevant in the execution. The last consid-
eration that can be done analyzing the results in Table 4 is that
TS2 and TS3 perform the fastest parallel classification, and
this is due to their most recent GPUs, which work at higher
frequencies.

In conclusion, it is possible to affirm that all the parallel
codes can elaborate a real-time classification for all the
images, taking only few seconds in the classification. This
result highlights that the desktop-based system equipped with
one or two GPUs is the most suitable technology to introduce
in the operating room. In fact, in addition to allow a local
processing of the data, it is capable of classifying the images
thoroughly satisfying the 1-minute constraint.
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FIGURE 9. Algorithms processing times in the P1C2 classification (worst
case). A-B) Times related to the CS-Single and CS-Multi1 versions
computed by the TS1. C-D) Times related to the CS-Single and CS-Multi1
versions computed by the TS3. The graphs report only the algorithm times
and durations, not considering the ones related to the memory
allocations and deallocations, CUDA contest creation and data transfers.

A. QUALITATIVE EVALUATION OF THE RESULTS
The parallel versions of the brain cancer detection system
elaborate the same classification maps already presented
in [12]. Fig. 10 shows the classification map related to the
image P2C1 (Fig. 10.F), reporting also all the partial algo-
rithm results. Fig. 10.A shows an RGB representation of
the HS image, i.e. the input of the supervised and unsuper-
vised classifications. Once the PCA algorithm is applied,
the one-band-representation of the HS image is generated
(Fig. 10.B), where it is possible to notice the spatial repre-
sentation of the most relevant spectral information after the
data dimensionality reduction. On the other hand, the classi-
fication result of the SVM algorithm is shown in Fig. 10.C.
This map associates a specific color to each class, displaying

FIGURE 10. A) RGB representation of the HS image; the yellow line
indicates the tumor location; B) One-band-representation (PCA output);
C) Classification map (SVM output); D) Filtered classification map (KNN
output); E) Unsupervised segmentation map (K-means output); F) Final
classification map (Majority Voting output).

the tumor area in red, the normal brain tissue in green, the
hypervascularized tissue in blue (mainly blood vessels) and
the background (other substances and materials presented in
a brain surgical scene) in black.

Fig. 10.B and C are the inputs of the KNN filtering algo-
rithm that performs a spatial homogenization of the classifi-
cation map. The result of the KNN step is shown in Fig. 10.D.
While this map differentiates each class from the others
on the base of the histological meaning, the K-means map
(Fig. 10.E) represents several clusters with different colors
without any physiological meaning, in terms of interpreting
the results. This kind of clustering allows delineating with
high accuracy the boundaries of some biological structures
such as blood vessels, materials like the ring markers and
several different tissues. Even if the clusters have not a
histological meaning, the different spectral regions are well
delimited. This result is consistent with the main goal of the
system that is to delineate the tumor area with high accuracy.
The final classification map (Fig. 10.F) is generated with
the Majority Voting algorithm which merges the supervised
and unsupervised classification outputs (Fig. 10.E and F)
obtaining a very accurate representation of the tumor where
the boundaries are precisely delimited.

B. COMPARISON WITH OTHER WORKS
Originally, HS images were used in remote sensing applica-
tions in the military area. The recent technological progress
allowed a more widespread use of the HS images also in other
fields, such as medicine and, in particular, cancer detection.
In the state of the art, HSI was used in different medical
applications for the analysis of several types of cancer, such as
cervix [34], breast [35], skin [36], stomach [37], prostate [38],
tongue [39] and brain cancer [21]. Most of these works
focus on providing a methodology for the HSI classification.
Only [21], [37], [39] report a technological implementation
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of the proposed solutions. In [37], the authors performed
a combination of SVM and Spectral Standard Deviation in
order to provide an index to discriminate between cancerous
and healthy tissues. The system acquires an image in 15 s
and computes the index in less than 20 s. The processing was
performed on a computer working at 3.6 GHz with a 2 GB
RAM and running in MATLAB environment. It is not fair
to compare this system with the one presented in this work
mainly because it is based on a simpler method. Despite this,
it is important to highlight that this solution does not provide a
real-time classification. In [39], the authors proposed a sparse
representation to detect the tumor in the tongue. The system
exploits an Intel R© CoreTMi7 CPU equipped with 4 GB of
RAM and analyzes the image in 3.4 s. In this case, it is
not possible to make a fair comparison since authors do not
declare if the elaboration is in real-time or not. However,
the only consideration that can be done is that it contains only
one algorithm, whose processing takes longer than our best
result where a combination of several algorithms is employed.
A fairer comparison can be made between our work and
the one presented in [21]. This work was developed within
the same project where this research is framed and, for this
reason, it adopts the same classification algorithm presented
in this paper. In fact, one aim of theHELICoiD project was the
evaluation of different technologies in order to select the most
efficient one for real-time brain cancer detection. In [21],
the classification system has been developed on a Kalray
Massively Parallel Processor Array (MPPA R©) combined
with a Intel R© CoreTMi7-4770k 3.5 GHz equipped with 8 GB
of RAM. This solution provides a large speedup compared
to serial processing, achieving a classification time of
about 1 minute (near real-time). It is worth noticing that an
efficient code for GPU technology provides a faster classi-
fication than the Kalray solution. On the other hand, it is
important to highlight that theKalray technology is optimized
for low power embedded applications. In this case, there are
no power restrictions in a surgical environment, thus, theGPU
device a more suitable technology for real-time classification
in this application. To the best of the authors’ knowledge,
in the state of the art, there are someHS classification systems
developed for remote sensing applications [7], [40]–[42].
However, it is not possible to make a fair comparison between
these works and the present solution mainly because they are
based on other kinds of techniques and restrictions, such as
power consumption. The proposed solution has been devel-
oped in order to solve a specific problem for intraoperative
brain cancer resection. In this application, it is of crucial
importance to have a real-time classification system capable
of delineating the cancer borders with high accuracy, in order
to facilitate the surgeon’s actions during tumor resection.

IV. CONCLUSION
The work presented in this paper developed several parallel
versions of an HS brain cancer detection system capable of
performing a real-time classification of HS images. During a
neurosurgical operation, the system is able to provide useful

information to the surgeon indicating the location and delin-
eation of the tumor area in order to facilitate its resection.

The parallel versions of the system presented in this work
can provide the result in real-time. The time constraint has
been set to 1 minute, i.e. the time taken by the camera to
acquire an HS image. The fastest parallel version described in
this work takes only 2.67 s to elaborate the largest image of
the database, thoroughly satisfying the real-time constraint.
Moreover, all the parallel versions are real-time compliant,
classifying the images in less than 21 seconds. This result has
been reached exploiting HPC technologies and, in particular,
hybrid systems equipped with the most recent multicore
CPUs and manycore GPUs.

The experimental results demonstrated that the use of
GPUs allows reaching high performances in those applica-
tions where a huge amount of data have to be elaborated
in a short period of time. The use of the HS images for
brain cancer detection is a representative example of this
kind of applications, due to the large amount of data that
characterizes the HS images. Moreover, a real-time classifi-
cation is of critical importance considering that this system
is used during neurosurgical procedures. Taking into account
that the operating theatres do not present power restrictions,
the main drawback of the GPU technology is overcome.
In addition, the choice of a monolithic system allows to
locally process data, avoiding data transmission to remote
technological solutions. In this kind of applications, having
an isolated system is of crucial importance due to security
and ethical reasons in the usage of sensitive data. Finally,
the results obtained in this work show a great potential in
the use of GPUs for processing HS data intraoperatively in
real-time, which will allow in the near future the real-time
processing of hyperspectral video imaging.
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