Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/60114
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zamuda, Ales | en_US |
dc.contributor.author | Hernández Sosa, José Daniel | en_US |
dc.date.accessioned | 2020-01-14T10:42:50Z | - |
dc.date.available | 2020-01-14T10:42:50Z | - |
dc.date.issued | 2019 | en_US |
dc.identifier.issn | 0957-4174 | en_US |
dc.identifier.other | WoS | - |
dc.identifier.uri | http://hdl.handle.net/10553/60114 | - |
dc.description.abstract | This paper presents an application of a recently well performing evolutionary algorithm for continuous numerical optimization, Success-History Based Adaptive Differential Evolution Algorithm (SHADE) including Linear population size reduction (L-SHADE), to an expert system for underwater glider path planning (UGPP). The proposed algorithm is compared to other similar algorithms and also to results from literature. The motivation of this work is to provide an alternative to the current glider mission control systems, that are based mostly on multidisciplinary human-expert teams from robotic and oceanographic areas. Initially configured as a decision-support expert system, the natural evolution of the tool is targeting higher autonomy levels. | en_US |
dc.language | eng | en_US |
dc.relation | Cost Action Chipset | en_US |
dc.relation.ispartof | Expert Systems with Applications | en_US |
dc.source | Expert Systems with Applications [ISSN 0957-4174], v. 119, p. 155-170, (Abril 2019) | en_US |
dc.subject | 120304 Inteligencia artificial | en_US |
dc.subject.other | Differential evolution | en_US |
dc.subject.other | Linear population size reduction | en_US |
dc.subject.other | Success-history based parameter adaptation | en_US |
dc.subject.other | L-SHADE | en_US |
dc.subject.other | Underwater glider path planning | en_US |
dc.title | Success history applied to expert system for underwater glider path planning using differential evolution | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.eswa.2018.10.048 | en_US |
dc.identifier.scopus | 85055870442 | - |
dc.identifier.isi | 000456222700012 | - |
dc.contributor.authorscopusid | 23975217400 | - |
dc.contributor.authorscopusid | 57188865208 | - |
dc.identifier.eissn | 1873-6793 | - |
dc.description.lastpage | 170 | en_US |
dc.description.firstpage | 155 | en_US |
dc.relation.volume | 119 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.contributor.daisngid | 1202017 | - |
dc.contributor.daisngid | 8050203 | - |
dc.utils.revision | Sí | en_US |
dc.contributor.wosstandard | WOS:Zamuda, A | - |
dc.contributor.wosstandard | WOS:Sosa, JDH | - |
dc.date.coverdate | Abril 2019 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-ING | en_US |
dc.description.sjr | 1,494 | |
dc.description.jcr | 5,452 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.project.principalinvestigator | Hernández Sosa, José Daniel | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0003-3022-7698 | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.fullName | Hernández Sosa, José Daniel | - |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
57
checked on Nov 24, 2024
WEB OF SCIENCETM
Citations
42
checked on Nov 24, 2024
Page view(s)
179
checked on Nov 16, 2024
Download(s)
259
checked on Nov 16, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.