Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/60114
Título: | Success history applied to expert system for underwater glider path planning using differential evolution | Autores/as: | Zamuda, Ales Hernández Sosa, José Daniel |
Clasificación UNESCO: | 120304 Inteligencia artificial | Palabras clave: | Differential evolution Linear population size reduction Success-history based parameter adaptation L-SHADE Underwater glider path planning |
Fecha de publicación: | 2019 | Proyectos: | Cost Action Chipset | Publicación seriada: | Expert Systems with Applications | Resumen: | This paper presents an application of a recently well performing evolutionary algorithm for continuous numerical optimization, Success-History Based Adaptive Differential Evolution Algorithm (SHADE) including Linear population size reduction (L-SHADE), to an expert system for underwater glider path planning (UGPP). The proposed algorithm is compared to other similar algorithms and also to results from literature. The motivation of this work is to provide an alternative to the current glider mission control systems, that are based mostly on multidisciplinary human-expert teams from robotic and oceanographic areas. Initially configured as a decision-support expert system, the natural evolution of the tool is targeting higher autonomy levels. | URI: | http://hdl.handle.net/10553/60114 | ISSN: | 0957-4174 | DOI: | 10.1016/j.eswa.2018.10.048 | Fuente: | Expert Systems with Applications [ISSN 0957-4174], v. 119, p. 155-170, (Abril 2019) |
Colección: | Artículos |
Citas SCOPUSTM
57
actualizado el 24-nov-2024
Citas de WEB OF SCIENCETM
Citations
42
actualizado el 24-nov-2024
Visitas
179
actualizado el 16-nov-2024
Descargas
259
actualizado el 16-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.