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Abstract

This paper presents an application of a recently well performing evolutionary algorithm for
continuous numerical optimization, Success-History Based Adaptive Differential Evolution
Algorithm (SHADE) including Linear population size reduction (L-SHADE), to an expert
system for Underwater Glider Path Planning (UGPP). The proposed algorithm is compared
to other similar algorithms and also to results from literature. The motivation of this work is
to provide an alternative to the current glider mission control systems, that are based mostly
on multidisciplinary human-expert teams from robotic and oceanographic areas. Initially
configured as a decision-support expert system, the natural evolution of the tool is targeting
higher autonomy levels.

To assess the performance of the applied optimizers, the test functions for UGPP are
utilized as defined in literature, which simulate real-life oceanic mission scenarios. Based on
these test functions, in this paper, the performance of the proposed application of L-SHADE
to UGPP is aggregated using statistical analyis.

The depicted fitness convergence graphs, final obtained fitness plots, trajectories drawn,
and per-scenario analysis show that the new proposed algorithm yields stable and competitive
output trajectories. Over the set of benchmark missions, the newly obtained results with a
configured L-SHADE outperforms existing literature results in UGPP and ranks best over the
compared algorithms. Moreover, some additional previously applied algorithms have been
reconfigured to yield improved performance. Thereby, this new application of evolutionary
algorithms to UGPP contributes significantly to the capacity of the decision-makers, when
they use the improved UGPP expert system yielding better trajectories.
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1. Introduction

This paper presents Underwater Glider Path Planning (UGPP) complex mission sce-
narios’ optimization with a recently well performing evolutionary algorithm for continuous
numerical optimization, Success-History Based Adaptive Differential Evolution Algorithm
(SHADE in (Tanabe & Fukunaga, 2013)) including linear population size reduction (L-
SHADE in (Tanabe & Fukunaga, 2014)). Nowadays, the glider missions operate under a
manual control basis. Human experts from Robotics and Oceanographic fields analyse the
environmental conditions and the mission objectives to decide about which commands should
be sent to the vehicle. The introduction of an expert system is of great interest here, both
from tactical and strategic perspectives, liberating human experts from this low-level, time
consuming task.

The real-world implementation of UGPP over a dynamic and changing environment in-
cluding deep oceans requires complex mission planning under very high uncertainties (Thomp-
son et al., 2010). Such mission is also influenced to a large extent by the remote sensing
for forecasting weather models’ outcomes used to predict spatial currents in deep sea, fur-
ther limiting the available time for accurate run-time decisions by the pilot who needs to
re-test several possible mission scenarios in a short time, usually a few minutes. All these
factors represent a clear application opportunity for an expert system, configured initially
as a decision-support tool. As more complex missions are introduced, the natural evolution
of such a tool is to gain relevance, targeting higher autonomy levels in operation.

UGPP and Underwater Autonomous Vehicle (UAV) applications in (Lermusiaux et al.,
2016), coupled with stochastic optimization like evolutionary optimization, are a recently
well accepted challenges, with, e.g., the best papers awarded at the Genetic and Evolutionary
Computation Conference (GECCO) 2016 Real World Applications (RWA) Track (Ellefsen
et al., 2016) or modern evolutionary optimization studies like the first one in 2014 (Zamuda
& Hernández Sosa, 2014) and other applications (Zhao et al., 2016; Cashmore et al., 2017;
Zadeh et al., 2017).

In the 2017 study, (Lermusiaux et al., 2017), the intelligent systems context of UGPP is
well defined, together with future prospects for UGPP, saying that ”Ocean scientists have
dreamed of and recently started to realize an ocean observing revolution with autonomous
observing platforms and sensors”, and listing evolutionary algorithms under concepts and
results in reachability and path planning components of the Marine Science of Autonomy,
supporting the capabilities and benefits of expert observing systems listed in the paper.
Furthermore, in that paper, (Lermusiaux et al., 2017) it is also recognized in that context,
first that ”computational cost grows exponentially for classic deterministic optimization”,
and second, also that ”solution is not guaranteed in evolutionary algorithms”; so we have
to work on these recognitions, apply evolutionary algorithms to overcome the computa-
tional cost of classic deterministic optimization (as already argued in the paper (Zamuda &
Hernández Sosa, 2014)), and assess the outcomes of the applied evolutionary algorithms to
evaluate their guarantees empirically, since theoretical insight for these complex algorithms
has only recently been catching up, as explained in the review paper (Opara & Arabas, 2018).
Therefore, over the modern UGPP mission planning task like (Zamuda & Hernández Sosa,
2014), it is important to incorporate and assess state-of-the-art quality optimizer algorithms
to push the boundaries and capabilities of autonomous glider missions, like the first modern
evolutionary optimization empirical comparative study (Zamuda & Hernández Sosa, 2014),
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which introduced the most advanced evolutionary algorithms, especially versions of Differ-
ential Evolution, and advanced the constraints scenarios study (Zamuda et al., 2016a) which
has also introduced novel versions of evolutionary algorithms, and has set more open chal-
lenges for the future of this emerging topic in expert systems for autonomous glider missions.
The new L-SHADE results, which evaluate the new application in UGPP, are reported in
this new paper, outperforming existing results as well as configuring better some already
applied algorithms for UGPP.

In UGPP, an optimization algorithm considers the ocean currents model predictions,
vessel dynamics, and limited communication, to yield potential way-points for the vessel.
Based on the most probable scenario for path optimization, this is specially useful in oceano-
graphic engineering for short-term opportunistic missions where no reactive control is possi-
ble. Therefore, by improving the expert system and its optimization algorithm component,
this can contribute to incrementing the capacity of the vehicles to take intelligent decisions,
fostering autonomy.

Related work is presented in the next section. The proposed approach with L-SHADE
application is presented in Section 3. Results are reported in Section 4. Conclusions with
future work prospects are then given in Section 5.

2. Related Work

In this section, we present the optimization algorithms, using emphasis on Differential
Evolution terminology and, specifically, L-SHADE details; then, the insight to the current
acchievements in UGPP involving expert systems is presented, including UGPP with evolu-
tionary algorithms.

2.1. Optimization and L-SHADE

L-SHADE is an extension of the basic Differential Evolution (DE), as a floating-point
encoding evolutionary algorithm (Eiben & Smith, 2003) for global optimization over contin-
uous spaces. There exist several recent surveys and insights with the DE algorithm’s base
name (Neri & Tirronen, 2010; Das & Suganthan, 2011; Das et al., 2011; Zamuda & Brest,
2015; Das et al., 2016; Piotrowski, 2017) and its metaphors (Sörensen, 2015; Boussäıd et al.,
2013; Zhou et al., 2011) stemming from the progress on computational mechanisms, mainly
from the branches of the DE, as well as applications (Zamuda et al., 2011; Zamuda & Brest,
2014; Glotić & Zamuda, 1 March 2015; Parouha & Das, 2016; Mlakar et al., 2017; Baig et al.,
2017; Das et al., 2016).

The basic DE (Storn & Price, 1997) consists of an evolutionary loop, within which new
population D-dimensional population vectors xi, ∀i ∈ {1, 2, ...,NP} are evolved. During each
generation step number g ∈ {1, 2, ..., G}, computational operators like mutation, crossover,
and selection on the population are performed, until a termination criterion is satisfied, like
a fixed number of maximum fitness evaluations (MAX FES). L-SHADE extends DE with
population size reduction (Tanabe & Fukunaga, 2014) that was already introduced to DE in
continuous optimization (Brest & Maučec, 2008) and real-world industry challenges (Zamuda
& Brest, 2012); and a well performing parameter control mechanism, named Success History
(SH) (Tanabe & Fukunaga, 2014). L-SHADE and its variants have won several recent
evolutionary benchmarking competitions (Tanabe & Fukunaga, 2013, 2014). Therefore, a
detailed L-SHADE explanation follows in the next paragraphs.
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The L-SHADE uses two storages of vectors to be applied during the optimization process.
First is the main population, which is used for evolution of vectors from one generation
to the next generation. The second storage is the auxiliary archive, which is used as an
additional source of the evolutionary process, allowing for an increased number of stored
successful vectors, or perhaps, also for later, during evolution after storage, when these
are replaced in the main population. For this auxiliary archive, the L-SHADE defines a
truncation mechanism, so that the size of this archive does not exceed the value of archive
size |A|, which is usually set to the size of the main population. When this archive is empty,
it is filled with new entries at the end, and when the limiting size is exceeded, the individual
ranked last after sorting the archive vectors by fitness is removed.

In L-SHADE, the mathematical operation termed shortly as mutation, creates a mutant
vector vi,g+1 for each corresponding current main population vector using a version called
’current-to-pbest/1’ mutation (introduced in JADE (Zhang & Sanderson, 2009)):

vi,g+1 = xi,g + Fi(xpbest,g − xi,g) + Fi(xr1,g − xr2,g), (1)

where the indexes r1, r2, and r3 are generated randomly with uniform distribution, and are
mutually different integers generated within the range {1, 2, ...,NP}, and they are also dif-
ferent from index i. Fi is an amplification factor of the difference vector for this individual at
index i. The first term in the mutation operators defined above is a base vector. Following,
the difference between two chosen vectors denotes a difference vector which, after multipli-
cation with Fi, is known as an amplified difference vector. There are two difference vectors
in this mutation. While the second one is among two randomly chosen main population
members, the first is more complex, because it includes exploitation greediness, which is
controlled by a factor of portion p ∈ [0, 1]. A chosen xpbest,g in this mutation denotes a uni-
form randomly selected individual among the p portion of best ranking vectors sorted from
unifying sets of: 1) current main population of size NP and 2) auxiliary archive population
that stores successful past trial vectors from generations up to g.

After mutation in L-SHADE, the mutant vector vi,g+1 is recombined using binary crossover
with the target vector xi,g to create a trial vector ui,g+1 = {ui,1,g+1, ui,2,g+1,..., ui,D,g+1}:

ui,j,g+1 =

{
vi,j,g+1 if rand(0, 1) ≤ CRi or j = jrand

xi,j,g otherwise
, (2)

where j ∈ {1, 2, ..., D} denotes the j-th search parameter of D-dimensional search space,
rand(0, 1) ∈ [0, 1] represents a uniformly distributed random number, and jrand denotes
a uniform randomly chosen index of the search parameter, which is always exchanged to
prevent cloning of target vectors. CRi denotes the crossover rate (Zaharie, 2009; Zamuda &
Brest, 2015).

The mechanism for computing Fi and CRi in L-SHADE is Success History (SH) (Tanabe
& Fukunaga, 2014), which was inspired after mechanisms from algorithms like SPDE (Ab-
bass, 2002), jDE (Brest et al., 2006), and JADE (Zhang & Sanderson, 2009). The SH
mechanism computes Fi and CRi by choosing index ri ∈ [1, H] randomly for each new
generated trial vector, then applying randomization over the value at this index:

Fi = randci (MF,ri , 0.1) , (3)
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CRi = randni (MCR,ri , 0.1) , (4)

which use control parameters memory archives MCR and MF of size H = |MCR| = |MF| to
store successful offspring control parameters. The memory is initialized as MCR,k = MF,k =
0.5, ∀k ∈ {1, 2, ..., H}. The randni(µ, σ

2) and randci(µ, σ
2) are random generator functions

for normal or Cauchy distribution with mean µ and variance σ2, respectively.
After applying mutation and crossover, the selection operator (in minimization) propa-

gates the fittest individual (Darwin, 1859) in the new generation for the main population:

xi,g+1 =

{
ui,g+1 if f(ui,g+1) ≤ f(xi,g)

xi,g otherwise
, (5)

then the possibly successful propagated new vector is also stored in the auxiliary archive
using the L-SHADE archiving. After this, the Linear Population Size Reduction (LPSR)
mechanism execution trigger is checked against the case, if the new population size differs
from the previous value:

NP g+1 = NPmin +

⌊
NFE

MAX FES
(NP init − NPmin) + 0.5

⌋
, (6)

when the worst individuals are removed from the main population, and also from the auxil-
iary archive. NFE denotes the current number of fitness evaluations and L-SHADE (Tanabe
& Fukunaga, 2014) uses NP init = 18D, NPmin=4, archive size equal to main population size,
p = 0.11, and H = 5.

2.2. UGPP Expert Systems and Optimization

UGPP missions are also influenced to a large extent by weather models yielding false
predictions or equipment failures, which then requires re-planning of missions when de-
tected. Such events interfere with the available time of UGPP pilots, who need to make
updated plans based on new scenarios’ simulations and predictions, sometimes within min-
utes. (Sangrà et al., 2007; Crawford et al., 2005). The manual re-planning scheme is valid
for long-term ocean crossing missions, but for short duration trajectories or multiple-vehicle
coordination, a different approach is required. The sampling of dynamic ocean structures
(fronts, eddies, upwellings), for example, cannot be tackled using this control, due to the
severe glider speed limitations. The UGPP research goal is to increase the autonomy level of
this kind of vehicles (Zamuda et al., 2016a). Mission planning robustness to prediction, com-
munication, and other failures thereby benefits glider operational capabilities (Lermusiaux
et al., 2016; Moura et al., 2010; Eichhorn, 2015).

An expert system outline for UGPP is seen in Figure 1. Such system includes automati-
zation of the AUV path control through the piloter delivering targets and the evolutionary
system providing intelligent optimization based on environmental sensors and models and
vehicle sensors, connected through limited communication lines. The challenge of path con-
trol is nontrivial, as a 4D, spatio-temporally varying field over which to glide needs to be
taken into account (Zamuda et al., 2016a). Having the potential of fully autonomous opera-
tion, the usual control scheme of ocean gliders does not, however exploit these capacities too
much and relies mainly on a human-in-the-loop (Hamann et al., 2016) approach, in part also
because of the expensive and fragile equipment involved. The evolutionary system therefore
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Figure 1: Schematic depiction of a UGPP expert system.

becomes an integral part of an expert system advising the team of human pilots that manage
one or more AUVs (Zamuda & Hernández Sosa, 2014). Considering the above explanation
of an UGPP expert system, different solutions to the UGPP and AUVs are proposed in the
literature:

• Nonlinear Trajectory Generation (NTG) on a Lagrangian Coherent Structures (LCS)
model to generate near-optimal routes for gliders within dynamic environments was
proposed in (Inanc et al., 2004).

• UGPP trajectory considering depth constraints was designed in (Yoon, 2014).

• Genetic Algorithms (GA) to produce suitable paths in the presence of strong currents
while trying to minimize energy consumption was presented in (Alvarez et al., 2004).

• Optimal sampling strategies for coordination of glider fleets, in (Leonard et al., 2010).

• Line formation by AUV swarms was addressed in (Sousselier et al., 2015).

• A multi-objective GA was also applied to autonomous underwater vehicles for sewage
outfall plume dispersion observations, which considered two objectives, i.e. the maxi-
mum number of water samples besides the total travel distance minimization, in (Moura
et al., 2010).

• In the particular case of eddies, the complexity of the path planning scenario is ag-
gravated by the high spatio-temporal variabilities of these structures and their specific
sampling requirements in (Hátún et al., 2007).

• A* search algorithm was applied to find optimal paths over a set of eddies with variable
scale and dynamics in (Garau et al., 2005).

• An iterative optimization method based on the Regional Ocean Modeling System
(ROMS) predictions for generating optimal tracking and sampling trajectories for
evolving ocean processes was proposed in (Smith et al., 2010). Their scheme includes
near real-time data assimilation, and has been tested both in simulation and real field
experiments.
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• Zig-zag sampling enhancement and vehicle adaptively following such trajectory was
presented in (Kularatne et al., 2015).

• Design of controllable glider wings was addressed in (Wang et al., 2017).

• Path planning within time varying scenarios was also presented in (Eichhorn, 2015).

• Optimization based on a Nelder-Mead algorithm in (Cabrera Gámez et al., 2013) (the
fmisearch Matlab implementation (Lagarias et al., 1998)) or genetic algorithms (GA)
in (Hernández Sosa et al., 2013) were used in early UGPP approaches.

• Level set theory was applied to some path planning problems in the presence of dynamic
flows including obstacle avoidance, in (Lolla et al., 2014), focusing on multi-vehicle
coordination applications.

• GA to evolve rendezvous trajectories for multiple gliders with minimal energy con-
sumption over all participating vehicles was applied in (Cao et al., 2017).

• Growing popularity deep learning (LeCun et al., 2015) schemes are hard to imple-
ment in this problem, due to the difficulty to obtain a representative dataset of glider
operation samples, and these techniques are currently reserved mainly only for good
visibility unmanned scenarios like airborne robots or space robots (Zhang et al., 2017).

• A UGPP system using DE was developed and analyzed in (Zamuda & Hernández Sosa,
2014, 2015; Zamuda et al., 2016a,b). The selection of the right path planning algorithm
version for the expert system is of main importance when dealing with complex and
potentially risky situations. During recently developed real-missions, for example,
strong currents were present in the vehicle recovery area near the shoreline. Intensive
simulation and optimization procedures are required to provide as much evidences as
possible for the decision making. Slight differences in the proposed path could result
in significant trajectory alterations.

In the approach (Zamuda & Hernández Sosa, 2014), a path based on the local kinematic
simulation of an underwater glider is evolved, by considering the daily and hourly sea cur-
rents predictions. The path is represented by control points where the glider is expected to
resurface for connection with a space communication satellite and to receive further navi-
gational instructions. Such an Evolutionary Elgorithm (EA) application (UGPP DE), the
UGPP trajectory optimization, is even more interesting when the current field is not ho-
mogeneous and bearings are non-trivial. For specifics about the fitness evaluation and the
UGPP approach with DE, the reader is advised to follow the full length descriptions in (Za-
muda & Hernández Sosa, 2014), and we merely re-iterate fitness evaluation steps here. To
evaluate a DE trial ui,j,g+1, its components are used as follows:

b0 = bearing(p0,ptarget), (7)

b1 = b0 + ui,1,g+1, (8)

p1 = simulate stint(p0, b1,map), (9)
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where b1 is the new bearing for the stint to be simulated and obtain fitness, by calculating
geometrical distance from the last evolved trajectory point pD and the target point ptarget,
using D stints (2 ≤ j ≤ D), which are followed by drift due to each resurfacing:

bj = bj−1 + ui,j,g, (10)

p′j−1 = simulate drift(pj−1,map), (11)

{pj} = {pj−1} ∪ simulate stint(p′j−1, bj,map), (12)

f(ui,g) =‖ pD − ptarget ‖, (13)

where functions bearing, simulate stint, simulate drift, together with the map parameter,
implement the UGPP simulation to generate a glider trajectory for evaluation.

3. Proposed Application

The L-SHADE algorithm is applied in this paper to the approach for UGPP, and its
performance assessed over 12 UGPP benchmark scenarios from (Zamuda & Hernández Sosa,
2014). These scenarios cover diverse ocean conditions in the Canary Island sea, character-
ized by the presence of highly dynamic ocean structures. As the goal of the path planning
is to drive the vehicle from different starting points as close as possible to the correspond-
ing targets, the initial-final points have also been selected according to the benchmark set
in (Zamuda & Hernández Sosa, 2014).

The novelty in this paper is described with the following contributions:

1. Application of L-SHADE to UGPP benchmark scenarios previously defined in (Zamuda
& Hernández Sosa, 2014) – see in Figure 2, lines 14–23 including UGPP simulation,

2. Significant improvements of the attained results on this UGPP benchamark scenarios,
compared to (Zamuda & Hernández Sosa, 2014),

3. Configuration of the L-SHADE LPSR mechanism for UGPP: The initial population for
L-SHADE is proposed to be set at 60 here, this is 5 times the number of bearings (it
was originally 18 times in (Tanabe & Fukunaga, 2014)), D = 12, therefore we denote
the new algorithm in this paper as L-SHADE5,

4. Comparison study with similar optimization algorithms (these are listed in Table 1)
that have previously been compared on UGPP, and

5. As L-SHADE5 includes population size changes, several other algorithms (based on
those previously applied to UGPP) are now presented with changing population sizes
during an evolutionary run, comparing their population sizing performances.

The pseudocode of the configured algorithm L-SHADE5 is shown in Figure 2. Require-
ments to run the algorithm are the inputs as variable parameters (supplied differently for
specific mission scenarios), the constant parameters for L-SHADE. The algorithm yields a
list of bearing angles. The optimization starts by initializing the evolved population and L-
SHADE parameter memory and archive storages (lines 1 and 2). Then the algorithm cycles
over the generation loop (line 3) and enters the iteration loop for each population vector
(line 4). With the exception of NP init value, all these are as defined by L-SHADE. The lines
5–13 are computation of a trial vector using control parameters adaptation, mutation, and
crossover. Lines 14–23 evaluate the trial vector. Lines 24 to 34 update the L-SHADE popu-
lation, archive, and memory storages. In the end, the best obtained DE vector is returned,
containing the values of angles for each evolved bearing (line 36).
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Figure 2: Algorithm L-SHADE5: using success history control parameters and LPSR on UGPP with DE.

Require: Variable parameters — p0 (current glider location), map (MyOcean IBI), ptarget (mission virtual
target point), MAX FES (maximum number of FES allocated), constants — p and |A| (L-SHADE
constants for JADE (Zhang & Sanderson, 2009) parameters: mutation greediness p = 0.11, archive size
|A| matching NP ), NPmin = 4 and NPinit = 5D = 60 (L-SHADE constants for LPSR minimum and
maximum DE population sizes), H (L-SHADE constants for setting memory size parameter in storing
successful history for control parameters Fi and CRi).

Ensure: x – list of instructions (D incremental bearing angles) for glider navigation,
1: uniform randomly generate DE initial population xi,0, ∀i ∈ {1, 2, ...,NP init}; NP0 = NP init;
2: initialize L-SHADE storages: A = ∅, ∀k ∈ {1, 2, ...,H}: MCR,k = MF,k = 0.5;
3: for DE generation loop g = 1 to G, NFE < MAX FES do
4: for DE iteration loop i (all individuals xi,g in population) do
5: DE new trial vector xi,g computation:

6: uniform randomly generate ri ∈ [1, H];
7: Fi = randci (MF,ri , 0.1);
8: CRi = randni (MCR,ri , 0.1);
9: P = {∀k ∈ [1,NPg] : xk,g} ∪A;

10: pbest = bp|P |+ 0.5c;
11: choose xpbest,g at pbest from P, ranked by fitness;
12: vi,g+1 = xi,g + Fi(xpbest,g − xi,g) + Fi(xr1,g − xr2,g);

13: ∀j ∈ {1, .., D}: ui,j,g+1 =

{
vi,j,g+1 if rand(0, 1) ≤ CRi,g+1 or j = jrand

xi,j,g otherwise
;

14: DE fitness evaluation (UGPP simulation):
15: b0 = bearing(p0,ptarget);
16: b1 = b0 + ui,1,g+1;
17: p1 = simulate stint(p0, b1,map);
18: for ∀j ∈ N | 2 ≤ j ≤ D:
19: bj = bj−1 + ui,j,g;
20: p′j−1 = simulate drift(pj−1,map);
21: {pj} = {pj−1} ∪ simulate stint(p′j−1, bj ,map);
22: end for
23: f(ui,g) =‖ pD − ptarget ‖;

24: xi,g+1 =

{
ui,g+1 if f(ui,g+1) ≤ f(xi,g)

xi,g otherwise
;

25: if f(ui,g+1) < f(xi,g):
26: replace worst individual in A with ui,g+1 (or add it when |A| < NPg);
27: save propagated Fi and CRi for updating parameter memories MF, MCR;

28: end if
29: end for
30: update memories MF and MCR with propagated parameters;

31: NPg+1 = NPmin +

⌊
NFE

MAX FES
(NP init −NPmin) + 0.5

⌋
; // checks LPSR

32: if NPg+1 < NPg then
33: for population and archive: reduce sizes of both to NPg+1 by removing their worst individuals;
34: end if
35: end for
36: return the best individual obtained among xi,G;
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4. Results

In this section, different algorithms are analyzed, besides the newly suggested L-SHADE5

algorithm, including different population sizes and population sizing strategies. We report
the results in the format as specified in (Zamuda & Hernández Sosa, 2014), so that the results
are directly comparable numerically and graphically to the basic measurements in (Zamuda
& Hernández Sosa, 2014). Therefore, the maximum number of fitness evaluations was set
at 2,048, number of bearings at D = 12, number of scenarios was 12, while the number
of independent runs was 10, and scenario settings (ocean currents and glider points) were
kept the same as in (Zamuda & Hernández Sosa, 2014). The other optimization algorithm
instances, utilized for performance comparisons, are listed in Table 1, together with citations
to literature sources.

Table 1: The different optimization algorithm base instances utilized for UGPP.

Algorithm Proposed
L-SHADE (Tanabe & Fukunaga, 2014)

jDE/best/1/bin (Zamuda & Hernández Sosa, 2014)
jDE/rand/1/bin (Brest et al., 2006)

DynNP jDE/best/1/bin (Zamuda et al., 2016a)
DynNP jDE/rand/1/bin (Brest & Maučec, 2008)

CLPSO (Liang et al., 2006)
SaDE (Qin et al., 2009)
JADE (Zhang & Sanderson, 2009)

EPSDE (Mallipeddi et al., 2011)
CoDE (Wang et al., 2011)

CMAES (Hansen & Ostermeier, 2001)

4.1. Per-scenario Competitiveness Analysis

First, let us compare the fitness value convergence graphs for the L-SHADE5 and the
algorithms using fixed population size from (Zamuda & Hernández Sosa, 2014). We set the
population sizes at 100 for the fixed population size algorithms, the same as in (Zamuda
& Hernández Sosa, 2014) (the different algorithm labels: best/1/bin, rand/1/bin, CLPSO,
SaDE, JADE, EPSDE, CoDE, CMAES). When adding population size changes during evolu-
tion, we renamed the algorithms by adding a subscript to their name, so that those compared
algorithms show information on using population sizes different than the default NP = 100.
These are defined for L-SHADE, or for those with population size reduction from DynNP
jDE (Brest & Maučec, 2008; Zamuda et al., 2016a). The numbers split by ”-” after NP init

for some of the algorithms, therefore denote changing population size NP : number of popu-
lation size reductions and NPmin, respectively, as applied through the mechanism presented
in (Zamuda & Brest, 2012) and previously used in UGPP (Zamuda & Brest, 2015).

As seen in Figures 3 and 4, all L-SHADE convergences compared to the other algorithms
from Table 1, as well as to algorithms from (Zamuda & Hernández Sosa, 2014), are compet-
itive. The performance of L-SHADE is more interesting, when comparing the final obtained
fitness values on average over independent runs, which is seen in Figure 5. Figure 5 shows
more indicatively, that the L-SHADE variants all attain fitness mostly among the relatively
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Figure 3: Convergence graphs of average attained fitness for test scenarios 1–6 for the main algorithms.
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Figure 4: Convergence graphs of average attained fitness for test scenarios 7–12 for the main algorithms.
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Figure 5: Final fitness average over independent runs on 12 test scenarios – results from previously reported
algorithms for UGPP, compared to the proposed algorithm.

Figure 6: Phenotype path images obtained using sets of algorithms, on scenario 1 (median performing run
final trajectory drawn) – left: L-SHADE5 against algorithms with NP = 100, right: L-SHADE5 against
algorithms with NP = 32 that were improved over their corresponding NP = 100 variants (see labels for
particular algorithm).
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lowest (best) values in all scenarios. To display the meaningful differences among trajec-
tories obtained even more evidently, Figure 6 renders the obtained trajectories for example
scenario (scenario 1), comparing all algorithms with NP = 100 (left) and NP = 32 (right,
only those are shown with improvement over corresponding original configuration version,
as will be discussed in the next subsection) against L-SHADE5, using the final obtained tra-
jectory in their corresponding median performing run. Figures 7 and 8 show in more detail
the differences among all 10 independent runs for particular algorithms: it can be seen that
L-SHADE5 yields trajectories that are most stable (i.e. the yielded bearing angles’ dispersion
seems smallest) and also that its trajectories are closest to the target point (which is drawn
using a black rectangle).

To evaluate reported results numerically, the statistical analysis of some of these results
is reported in Tables 3 and 2, which measure more clearly that L-SHADE5 outperforms
several of these algorithms in many scenarios at α = 0.05: the † signifies that L-SHADE5 is
outperforming the compared algoritm significantly, and ‡ signifies that L-SHADE5 is outper-
formed. On each scenario, the L-SHADE5 outperformed all competing algorithms reported
with NP = 100 from previous work (Zamuda & Hernández Sosa, 2014) (Table 3). For al-
most all scenarios it also outperformed the other L-SHADE configurations tested and the
compared algorithms that are based on changing population size for UGPP (Zamuda et al.,
2016a) in Table 2: 10 out of 72 cases were where it was outperformed, but still L-SHADE5

was better than each algorithm here at least twice as many times as L-SHADE5 was worse.
It outperformed the default L-SHADE18 in all cases. Therefore, more population sizing
comparisons and aggregative statistics are reported in the following subsection.

4.2. Aggregated Performance Statistics for Algorithms

For comparison as a non-parametric test over the algorithms in Table 4, different DE and
evolutionary algorithms with even more different initial population sizes (NPinit) are com-
pared, using codes at http://sci2s.ugr.es/keel/multipleTest.zip for Friedman rank-
ing (Demšar, 2006). The ranking (lower rank value denotes better algorithm performance)
displays an aggregative statistic of algorithms’ relative performances, at α = 0.05 confidence
and Friedman statistic value 4776.1. Again, subscripts denote population sizing, otherwise
it was set at 100. In the Table, only the most interesting combinations are reported, as for
others, the performance was worse than the proposed L-SHADE5.

Table 5 then reports post-hoc hypotheses on these Friedman statistics, where the post-
hoc procedures reject hypotheses of the same performance, i.e. the best algorithm L-SHADE5

outperforms some other algorithm at pval-values: Bonferroni-Dunn’s, ≤0.000909, Holm’s,
≤0.00714, Hochberg’s, ≤0.00625, Hommel’s, ≤0.00714, Holland’s, ≤0.0073, Rom’s, ≤0.00657,
Finner’s, ≤0.0447, and Li’s, ≤0.0288, respectively.

As can be said on the overall benchmark performance in Table 5, the most post-hoc tests
confirm that the proposed L-SHADE5 outperforms the algorithms after rank 7 in all versions
of JADE, CMAES, CoDE, and EPSDE, and some versions of DynNP jDE and SaDE.

When initial population for algorithms at a different value that at 100 in Table 5, the
ranking results improvement for SaDE32 with NP = 32 is high compared to SaDE with
NP = 100. Similar can be observed for JADE, CoDE, and EPSDE, but not for CLPSO or
CMAES, which gives another insight in performance comparison and configuration for these
algorithms for UGPP.
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Figure 7: Phenotype path images obtained using selected algorithms, on scenario 1 (all 10 runs final trajec-
tories drawn) – green: L-SHADE5, yellow: compared algorithm (see particular image label).
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Figure 8: Phenotype path images obtained using selected algorithms, on scenario 1 (all 10 runs final trajec-
tories drawn) – green: L-SHADE5, yellow: compared algorithm (see particular image label).
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Table 2: Obtained fitness with L-SHADE5 and t-test comparisons with other algorithms on 12 scenarios.
Algorithm # Scenario Minimum Median Maximum Average Std. dev.
L-SHADE5 T1 5.1617e+04 5.1854e+04 5.3084e+04 5.2083e+04 5.4742e+02
L-SHADE5 T2 9.3023e+04 9.3687e+04 9.5817e+04 9.3948e+04 9.7431e+02
L-SHADE5 T3 4.1874e+04 4.2058e+04 4.2848e+04 4.2120e+04 2.7070e+02
L-SHADE5 T4 1.0016e+05 1.0045e+05 1.0083e+05 1.0043e+05 2.0395e+02
L-SHADE5 T5 6.2204e+04 6.2637e+04 6.3908e+04 6.2917e+04 6.7038e+02
L-SHADE5 T6 3.6222e+04 3.6423e+04 3.7226e+04 3.6498e+04 2.9590e+02
L-SHADE5 T7 5.1484e+04 5.1538e+04 5.1574e+04 5.1532e+04 2.9726e+01
L-SHADE5 T8 9.1233e+04 9.1685e+04 9.2116e+04 9.1684e+04 2.8596e+02
L-SHADE5 T9 8.0872e+04 8.1268e+04 8.1629e+04 8.1273e+04 1.9728e+02
L-SHADE5 T10 6.2485e+04 6.3042e+04 6.5683e+04 6.3267e+04 9.1905e+02
L-SHADE5 T11 2.8155e+04 2.8589e+04 3.0551e+04 2.8753e+04 6.6710e+02
L-SHADE5 T12 1.0172e+05 1.0204e+05 1.0314e+05 1.0213e+05 4.3015e+02

L-SHADE18 T1 5.3808e+04 5.5668e+04 6.0550e+04 5.6146e+04‡ 2.2169e+03

L-SHADE18 T2 9.6051e+04 9.6978e+04 9.8803e+04 9.7029e+04‡ 8.5721e+02

L-SHADE18 T3 4.2906e+04 4.3359e+04 4.5823e+04 4.3523e+04‡ 8.5129e+02

L-SHADE18 T4 1.0135e+05 1.0313e+05 1.0593e+05 1.0304e+05‡ 1.3841e+03

L-SHADE18 T5 6.4259e+04 6.6344e+04 6.9575e+04 6.6012e+04‡ 1.5108e+03

L-SHADE18 T6 3.8045e+04 3.9440e+04 4.2078e+04 3.9669e+04‡ 1.2561e+03

L-SHADE18 T7 5.1628e+04 5.2251e+04 5.6006e+04 5.2728e+04‡ 1.3677e+03

L-SHADE18 T8 9.2644e+04 9.3813e+04 9.7611e+04 9.4268e+04‡ 1.4696e+03

L-SHADE18 T9 8.1780e+04 8.2440e+04 8.3764e+04 8.2574e+04‡ 6.7935e+02

L-SHADE18 T10 6.3507e+04 6.4911e+04 6.8082e+04 6.5147e+04‡ 1.5691e+03

L-SHADE18 T11 2.8993e+04 3.0790e+04 3.2320e+04 3.0614e+04‡ 1.1329e+03

L-SHADE18 T12 1.0320e+05 1.0432e+05 1.0624e+05 1.0429e+05‡ 8.9543e+02

L-SHADE9 T1 5.1787e+04 5.2368e+04 5.4790e+04 5.2838e+04‡ 1.0774e+03

L-SHADE9 T2 9.3436e+04 9.5318e+04 9.5902e+04 9.4890e+04‡ 9.0426e+02

L-SHADE9 T3 4.2202e+04 4.2320e+04 4.3080e+04 4.2410e+04‡ 2.7356e+02

L-SHADE9 T4 1.0021e+05 1.0102e+05 1.0202e+05 1.0102e+05‡ 5.1986e+02

L-SHADE9 T5 6.2435e+04 6.3798e+04 6.5895e+04 6.3739e+04‡ 1.0809e+03

L-SHADE9 T6 3.6607e+04 3.7201e+04 3.8075e+04 3.7192e+04‡ 4.5789e+02

L-SHADE9 T7 5.1504e+04 5.1575e+04 5.1897e+04 5.1592e+04‡ 1.1462e+02

L-SHADE9 T8 9.1369e+04 9.2228e+04 9.3103e+04 9.2115e+04‡ 5.5955e+02

L-SHADE9 T9 8.1255e+04 8.1589e+04 8.2511e+04 8.1752e+04‡ 4.1417e+02

L-SHADE9 T10 6.2931e+04 6.3571e+04 6.4702e+04 6.3684e+04‡ 5.3175e+02

L-SHADE9 T11 2.8006e+04 2.9920e+04 3.4163e+04 2.9953e+04‡ 1.7946e+03

L-SHADE9 T12 1.0178e+05 1.0240e+05 1.0316e+05 1.0238e+05‡ 3.7907e+02

L-SHADE3 T1 5.1545e+04 5.1883e+04 5.2636e+04 5.1937e+04† 3.3148e+02

L-SHADE3 T2 9.2950e+04 9.3732e+04 1.0263e+05 9.4518e+04‡ 2.9276e+03
L-SHADE3 T3 4.1941e+04 4.2180e+04 4.2441e+04 4.2173e+04 1.6166e+02
L-SHADE3 T4 1.0017e+05 1.0041e+05 1.0078e+05 1.0044e+05 2.0045e+02

L-SHADE3 T5 6.2133e+04 6.3199e+04 6.4434e+04 6.3225e+04‡ 7.6912e+02

L-SHADE3 T6 3.6286e+04 3.6601e+04 3.7880e+04 3.6709e+04‡ 4.4540e+02

L-SHADE3 T7 5.1506e+04 5.1549e+04 5.1662e+04 5.1550e+04‡ 4.3998e+01
L-SHADE3 T8 9.1286e+04 9.1686e+04 9.2717e+04 9.1743e+04 4.4713e+02

L-SHADE3 T9 8.0945e+04 8.1440e+04 8.1784e+04 8.1370e+04‡ 2.5567e+02

L-SHADE3 T10 6.2557e+04 6.3184e+04 6.8395e+04 6.3866e+04‡ 1.8132e+03

L-SHADE3 T11 2.8015e+04 2.9607e+04 3.2927e+04 2.9692e+04‡ 1.5128e+03

L-SHADE3 T12 1.0181e+05 1.0212e+05 1.0731e+05 1.0264e+05‡ 1.6559e+03

best/1/bin512−20−20 T1 5.2400e+04 5.2735e+04 5.4622e+04 5.3070e+04‡ 7.0771e+02

best/1/bin512−20−20 T2 9.2780e+04 9.3188e+04 9.3968e+04 9.3214e+04† 3.8284e+02

best/1/bin512−20−20 T3 4.2095e+04 4.2290e+04 4.2466e+04 4.2259e+04‡ 1.3440e+02

best/1/bin512−20−20 T4 1.0043e+05 1.0074e+05 1.0172e+05 1.0083e+05‡ 4.1239e+02

best/1/bin512−20−20 T5 6.2032e+04 6.3218e+04 6.4577e+04 6.3180e+04‡ 9.4324e+02

best/1/bin512−20−20 T6 3.6804e+04 3.7457e+04 3.8050e+04 3.7350e+04‡ 4.0086e+02

best/1/bin512−20−20 T7 5.1491e+04 5.1563e+04 5.1784e+04 5.1569e+04‡ 8.0100e+01

best/1/bin512−20−20 T8 9.2529e+04 9.3022e+04 9.4041e+04 9.3140e+04‡ 5.1479e+02

best/1/bin512−20−20 T9 8.1141e+04 8.1614e+04 8.2593e+04 8.1657e+04‡ 4.6893e+02

best/1/bin512−20−20 T10 6.2363e+04 6.2727e+04 6.3519e+04 6.2830e+04† 3.5982e+02

best/1/bin512−20−20 T11 2.8087e+04 2.8562e+04 2.9198e+04 2.8559e+04† 3.5099e+02

best/1/bin512−20−20 T12 1.0203e+05 1.0239e+05 1.0479e+05 1.0276e+05‡ 9.5257e+02

best/1/bin256−15−20 T1 5.2273e+04 5.2697e+04 5.3155e+04 5.2665e+04‡ 3.3036e+02

best/1/bin256−15−20 T2 9.2362e+04 9.3749e+04 9.4815e+04 9.3434e+04† 9.4603e+02

best/1/bin256−15−20 T3 4.1966e+04 4.2126e+04 4.2623e+04 4.2185e+04‡ 2.0237e+02

best/1/bin256−15−20 T4 1.0048e+05 1.0097e+05 1.0156e+05 1.0095e+05‡ 4.1746e+02

best/1/bin256−15−20 T5 6.1941e+04 6.2181e+04 6.3805e+04 6.2387e+04† 5.8488e+02

best/1/bin256−15−20 T6 3.6802e+04 3.7087e+04 3.7561e+04 3.7094e+04‡ 2.2014e+02

best/1/bin256−15−20 T7 5.1501e+04 5.1542e+04 5.1689e+04 5.1553e+04‡ 5.4434e+01

best/1/bin256−15−20 T8 9.2368e+04 9.2817e+04 9.4012e+04 9.3036e+04‡ 5.8131e+02

best/1/bin256−15−20 T9 8.0866e+04 8.1482e+04 8.2545e+04 8.1529e+04‡ 5.1202e+02

best/1/bin256−15−20 T10 6.2143e+04 6.2542e+04 6.2901e+04 6.2530e+04† 2.6719e+02
best/1/bin256−15−20 T11 2.8227e+04 2.8859e+04 2.9512e+04 2.8767e+04 4.4143e+02

best/1/bin256−15−20 T12 1.0202e+05 1.0241e+05 1.0327e+05 1.0251e+05‡ 3.9674e+02

best/1/bin64−5−20 T1 5.2339e+04 5.2754e+04 5.3204e+04 5.2741e+04‡ 2.6141e+02

best/1/bin64−5−20 T2 9.2540e+04 9.3328e+04 9.5926e+04 9.3518e+04† 1.0054e+03
best/1/bin64−5−20 T3 4.1971e+04 4.2181e+04 4.2399e+04 4.2164e+04 1.2693e+02

best/1/bin64−5−20 T4 1.0045e+05 1.0067e+05 1.0162e+05 1.0084e+05‡ 4.1677e+02

best/1/bin64−5−20 T5 6.1881e+04 6.2236e+04 6.3155e+04 6.2255e+04† 4.0004e+02

best/1/bin64−5−20 T6 3.6768e+04 3.7106e+04 3.8431e+04 3.7315e+04‡ 5.5685e+02

best/1/bin64−5−20 T7 5.1490e+04 5.1566e+04 5.1676e+04 5.1558e+04‡ 6.0421e+01

best/1/bin64−5−20 T8 9.2685e+04 9.3431e+04 9.5238e+04 9.3507e+04‡ 8.5588e+02
best/1/bin64−5−20 T9 8.1140e+04 8.1233e+04 8.1801e+04 8.1287e+04 2.0847e+02

best/1/bin64−5−20 T10 6.2026e+04 6.2557e+04 6.3348e+04 6.2572e+04† 4.3162e+02
best/1/bin64−5−20 T11 2.8007e+04 2.8726e+04 2.9526e+04 2.8769e+04 4.6938e+02

best/1/bin64−5−20 T12 1.0200e+05 1.0231e+05 1.0359e+05 1.0251e+05‡ 5.0376e+02
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Table 3: Obtained fitness compared (L-SHADE5 t-test) with some algorithms on 12 test scenarios.
Algorithm # Scenario Minimum Median Maximum Average Std. dev.

rand/1/bin T1 5.8831e+04 6.1018e+04 6.4258e+04 6.1294e+04‡ 1.7347e+03

rand/1/bin T2 9.8231e+04 1.0270e+05 1.0511e+05 1.0222e+05‡ 1.8090e+03

rand/1/bin T3 4.5862e+04 4.8961e+04 5.0495e+04 4.8498e+04‡ 1.5316e+03

rand/1/bin T4 1.0651e+05 1.0795e+05 1.1140e+05 1.0839e+05‡ 1.7144e+03

rand/1/bin T5 7.0657e+04 7.3050e+04 7.7186e+04 7.3061e+04‡ 1.9739e+03

rand/1/bin T6 4.2263e+04 4.5323e+04 4.7401e+04 4.5267e+04‡ 1.5267e+03

rand/1/bin T7 5.4904e+04 5.6425e+04 5.7245e+04 5.6349e+04‡ 7.2850e+02

rand/1/bin T8 9.9129e+04 1.0141e+05 1.0256e+05 1.0092e+05‡ 1.2345e+03

rand/1/bin T9 8.3833e+04 8.7101e+04 8.9164e+04 8.6861e+04‡ 1.7859e+03

rand/1/bin T10 6.3967e+04 6.5943e+04 6.9026e+04 6.5915e+04‡ 1.7161e+03

rand/1/bin T11 3.2699e+04 3.5012e+04 3.5457e+04 3.4517e+04‡ 9.0154e+02

rand/1/bin T12 1.0814e+05 1.0994e+05 1.1227e+05 1.1007e+05‡ 1.2225e+03

CLPSO T1 5.7232e+04 6.2109e+04 6.4419e+04 6.1071e+04‡ 2.6920e+03

CLPSO T2 9.6935e+04 1.0157e+05 1.0365e+05 1.0098e+05‡ 1.9939e+03

CLPSO T3 4.6473e+04 4.7836e+04 5.1775e+04 4.8515e+04‡ 1.5989e+03

CLPSO T4 1.0484e+05 1.0836e+05 1.1079e+05 1.0800e+05‡ 1.9187e+03

CLPSO T5 6.8757e+04 7.2466e+04 7.7497e+04 7.2236e+04‡ 2.5705e+03

CLPSO T6 4.1681e+04 4.4102e+04 4.6482e+04 4.4290e+04‡ 1.4631e+03

CLPSO T7 5.3109e+04 5.5461e+04 5.8097e+04 5.5711e+04‡ 1.5913e+03

CLPSO T8 9.7071e+04 1.0079e+05 1.0385e+05 1.0067e+05‡ 2.0795e+03

CLPSO T9 8.5010e+04 8.7456e+04 8.9887e+04 8.7397e+04‡ 1.3641e+03

CLPSO T10 6.4016e+04 6.6144e+04 6.7642e+04 6.5960e+04‡ 1.0831e+03

CLPSO T11 3.1801e+04 3.3585e+04 3.7017e+04 3.3684e+04‡ 1.4485e+03

CLPSO T12 1.0745e+05 1.0963e+05 1.1420e+05 1.0972e+05‡ 2.3920e+03

SaDE T1 5.4947e+04 5.5725e+04 5.8389e+04 5.5921e+04‡ 1.0151e+03

SaDE T2 9.5087e+04 9.7193e+04 9.8731e+04 9.6889e+04‡ 1.2208e+03

SaDE T3 4.2774e+04 4.3591e+04 4.4935e+04 4.3676e+04‡ 6.3626e+02

SaDE T4 1.0234e+05 1.0315e+05 1.0455e+05 1.0332e+05‡ 7.8232e+02

SaDE T5 6.3888e+04 6.5289e+04 6.7138e+04 6.5247e+04‡ 9.6098e+02

SaDE T6 3.8324e+04 3.9772e+04 4.1079e+04 3.9794e+04‡ 7.9325e+02

SaDE T7 5.1941e+04 5.2682e+04 5.3980e+04 5.2612e+04‡ 6.9953e+02

SaDE T8 9.3978e+04 9.6990e+04 9.8012e+04 9.6581e+04‡ 1.1997e+03

SaDE T9 8.1819e+04 8.3310e+04 8.4457e+04 8.3095e+04‡ 8.5266e+02

SaDE T10 6.3057e+04 6.3945e+04 6.4641e+04 6.3804e+04‡ 5.8987e+02

SaDE T11 2.9328e+04 3.0610e+04 3.1974e+04 3.0479e+04‡ 9.6880e+02

SaDE T12 1.0379e+05 1.0592e+05 1.0673e+05 1.0556e+05‡ 8.5235e+02

JADE T1 5.5987e+04 5.8393e+04 5.9150e+04 5.7878e+04‡ 1.1077e+03

JADE T2 9.5806e+04 9.6537e+04 9.8382e+04 9.6828e+04‡ 8.8847e+02

JADE T3 4.3881e+04 4.4259e+04 4.5367e+04 4.4379e+04‡ 5.0169e+02

JADE T4 1.0298e+05 1.0408e+05 1.0581e+05 1.0420e+05‡ 8.5028e+02

JADE T5 6.5259e+04 6.6603e+04 6.8610e+04 6.6665e+04‡ 1.1297e+03

JADE T6 3.9359e+04 4.0427e+04 4.2217e+04 4.0637e+04‡ 9.6144e+02

JADE T7 5.1943e+04 5.3136e+04 5.4355e+04 5.3162e+04‡ 7.2664e+02

JADE T8 9.5308e+04 9.6926e+04 9.8139e+04 9.6630e+04‡ 8.3405e+02

JADE T9 8.2269e+04 8.2581e+04 8.4552e+04 8.2802e+04‡ 7.2030e+02

JADE T10 6.3681e+04 6.4120e+04 6.4356e+04 6.4033e+04‡ 2.2212e+02

JADE T11 3.0104e+04 3.1279e+04 3.2946e+04 3.1424e+04‡ 7.8868e+02

JADE T12 1.0453e+05 1.0649e+05 1.0749e+05 1.0615e+05‡ 9.7355e+02

EPSDE T1 6.0905e+04 6.5217e+04 6.8258e+04 6.3989e+04‡ 2.8396e+03

EPSDE T2 9.7320e+04 1.0333e+05 1.0543e+05 1.0277e+05‡ 2.2329e+03

EPSDE T3 4.7843e+04 5.0883e+04 5.3432e+04 5.0448e+04‡ 2.1938e+03

EPSDE T4 1.0739e+05 1.1202e+05 1.1314e+05 1.1133e+05‡ 1.6578e+03

EPSDE T5 6.9069e+04 7.4531e+04 7.9716e+04 7.4802e+04‡ 3.4634e+03

EPSDE T6 4.2304e+04 4.5866e+04 4.7694e+04 4.5684e+04‡ 1.8281e+03

EPSDE T7 5.5255e+04 5.8490e+04 6.0669e+04 5.8345e+04‡ 1.9964e+03

EPSDE T8 9.6857e+04 1.0226e+05 1.0494e+05 1.0187e+05‡ 2.3831e+03

EPSDE T9 8.3116e+04 8.7369e+04 9.0239e+04 8.7665e+04‡ 2.1060e+03

EPSDE T10 6.4028e+04 7.0737e+04 7.6787e+04 7.0688e+04‡ 4.0223e+03

EPSDE T11 3.2014e+04 3.5967e+04 3.7392e+04 3.5823e+04‡ 1.6716e+03

EPSDE T12 1.0657e+05 1.1192e+05 1.1402e+05 1.1115e+05‡ 2.5062e+03

CoDE T1 5.9325e+04 6.0919e+04 6.3147e+04 6.1310e+04‡ 1.2180e+03

CoDE T2 9.8561e+04 1.0162e+05 1.0439e+05 1.0138e+05‡ 1.5753e+03

CoDE T3 4.5395e+04 4.7075e+04 5.0039e+04 4.7206e+04‡ 1.4416e+03

CoDE T4 1.0569e+05 1.0857e+05 1.1008e+05 1.0804e+05‡ 1.6739e+03

CoDE T5 6.6428e+04 7.1226e+04 7.1961e+04 7.0599e+04‡ 1.6482e+03

CoDE T6 4.2389e+04 4.4381e+04 4.6385e+04 4.4301e+04‡ 1.2695e+03

CoDE T7 5.4594e+04 5.6798e+04 5.8300e+04 5.6271e+04‡ 1.2234e+03

CoDE T8 9.9512e+04 1.0107e+05 1.0152e+05 1.0069e+05‡ 7.2547e+02

CoDE T9 8.4345e+04 8.5851e+04 9.0992e+04 8.6459e+04‡ 2.1479e+03

CoDE T10 6.4150e+04 6.5314e+04 6.6253e+04 6.5335e+04‡ 7.3808e+02

CoDE T11 3.1772e+04 3.3348e+04 3.5563e+04 3.3570e+04‡ 1.2003e+03

CoDE T12 1.0895e+05 1.1017e+05 1.1088e+05 1.0985e+05‡ 6.8247e+02

CMAES T1 5.2250e+04 5.2591e+04 7.5940e+04 5.4845e+04‡ 7.4149e+03

CMAES T2 9.2667e+04 9.3414e+04 1.1655e+05 1.0021e+05‡ 9.6166e+03

CMAES T3 4.1969e+04 4.2052e+04 6.3968e+04 4.4223e+04‡ 6.9378e+03

CMAES T4 1.0036e+05 1.0050e+05 1.1698e+05 1.0226e+05‡ 5.1846e+03

CMAES T5 6.1743e+04 6.3118e+04 8.5491e+04 6.5035e+04‡ 7.2589e+03

CMAES T6 3.6878e+04 3.7059e+04 5.3065e+04 3.8803e+04‡ 5.0435e+03

CMAES T7 5.1501e+04 5.1607e+04 6.6530e+04 5.4507e+04‡ 6.1116e+03

CMAES T8 9.2469e+04 9.3005e+04 1.4588e+05 9.9456e+04‡ 1.6580e+04

CMAES T9 8.0903e+04 8.1468e+04 1.0408e+05 8.6917e+04‡ 9.6706e+03

CMAES T10 6.2405e+04 6.3051e+04 9.1605e+04 6.8078e+04‡ 9.2774e+03

CMAES T11 2.8185e+04 2.8577e+04 4.2253e+04 3.0935e+04‡ 5.0722e+03

CMAES T12 1.0202e+05 1.0216e+05 1.2844e+05 1.0489e+05‡ 8.2861e+03
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Table 4: Average Rankings of the algorithms.
Algorithm Ranking

L-SHADE5 6.9
SaDE32 8.5

L-SHADE3 8.8
best/1/bin64−5−20 8.9

best/1/bin256−15−20 9.1
best/1/bin64 9.7
best/1/bin32 9.8

best/1/bin512−20−20 10.3
L-SHADE9 12.7
best/1/bin 12.9

rand/1/bin32−20−10 12.9
best/1/bin128 14.6

JADE32 15.2
CMAES 16.6

CMAES128 16.6
CMAES256 16.6
CMAES32 16.6
CMAES512 16.6
CMAES64 16.6

SaDE64 19.4
best/1/bin256 20.4

JADE64 23.0
L-SHADE18 23.7

SaDE 23.9
rand/1/bin32 24.7
best/1/bin512 25.3

CoDE32 25.4
SaDE128 26.1
JADE 26.6

JADE128 28.2
JADE256 32.4
SaDE256 34.6

rand/1/bin256−15−40 35.4
CoDE64 35.6

EPSDE32 36.4
SaDE512 36.5
JADE512 36.6

rand/1/bin64 36.6
CoDE 40.7

CLPSO 41.6
CLPSO128 41.6
CLPSO32 41.6
CLPSO512 41.6
CLPSO64 41.6

rand/1/bin 43.1
CoDE128 43.2
CoDE256 44.2

rand/1/bin128 44.2
EPSDE64 45.9
CoDE512 47.0

EPSDE512 47.1
rand/1/bin512 47.1
rand/1/bin256 47.6

EPSDE 48.1
EPSDE128 49.4
EPSDE256 49.6
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Table 5: Post-hoc procedures over Friedman statistics (reference best ranking R0 algorithm is L-SHADE5).
Rank (i) Algorithm z = (R0 −Ri)/SE pval H/H/H Holland Rom Finner Li

(0) (L-SHADE5)
1 SaDE32 0.752 0.452 0.05 0.05 0.05 0.05 0.05
2 L-SHADE3 0.934 0.35 0.025 0.0253 0.025 0.0491 0.0288
3 best/1/bin64−5−20 0.974 0.33 0.0167 0.017 0.0167 0.0482 0.0288
4 best/1/bin256−15−20 1.05 0.292 0.0125 0.0127 0.0131 0.0473 0.0288
5 best/1/bin64 1.37 0.172 0.01 0.0102 0.0105 0.0464 0.0288
6 best/1/bin32 1.42 0.157 0.00833 0.00851 0.00876 0.0456 0.0288
7 best/1/bin512−20−20 1.63 0.104 0.00714 0.0073 0.00751 0.0447 0.0288
8 L-SHADE9 2.79 0.00527 0.00625 0.00639 0.00657 0.0438 0.0288
9 best/1/bin 2.85 0.00438 0.00556 0.00568 0.00584 0.0429 0.0288
10 rand/1/bin32−20−10 2.88 0.00396 0.005 0.00512 0.00526 0.042 0.0288
11 best/1/bin128 3.69 0.000222 0.00455 0.00465 0.00478 0.0411 0.0288
12 JADE32 3.98 6.96e-05 0.00417 0.00427 0.00438 0.0402 0.0288
13 CMAES 4.61 4.09e-06 0.00385 0.00394 0.00405 0.0393 0.0288
14 CMAES32 4.61 4.09e-06 0.00357 0.00366 0.00376 0.0384 0.0288
15 CMAES64 4.61 4.09e-06 0.00333 0.00341 0.00351 0.0375 0.0288
16 CMAES128 4.61 4.09e-06 0.00313 0.0032 0.00329 0.0366 0.0288
17 CMAES256 4.61 4.09e-06 0.00294 0.00301 0.00309 0.0357 0.0288
18 CMAES512 4.61 4.09e-06 0.00278 0.00285 0.00292 0.0348 0.0288
19 SaDE64 5.94 2.91e-09 0.00263 0.0027 0.00277 0.0339 0.0288
20 best/1/bin256 6.43 1.26e-10 0.0025 0.00256 0.00263 0.033 0.0288
21 JADE64 7.65 1.94e-14 0.00238 0.00244 0.0025 0.0321 0.0288
22 L-SHADE18 7.99 1.3e-15 0.00227 0.00233 0.00239 0.0312 0.0288
23 SaDE 8.09 6.18e-16 0.00217 0.00223 0.00229 0.0303 0.0288
24 rand/1/bin32 8.45 2.82e-17 0.00208 0.00213 0.00219 0.0294 0.0288
25 best/1/bin512 8.75 2.12e-18 0.002 0.00205 0.0021 0.0285 0.0288
26 CoDE32 8.78 1.6e-18 0.00192 0.00197 0.00202 0.0276 0.0288
27 SaDE128 9.13 7.06e-20 0.00185 0.0019 0.00195 0.0267 0.0288
28 JADE 9.36 7.96e-21 0.00179 0.00183 0.00188 0.0258 0.0288
29 JADE128 10.1 4.88e-24 0.00172 0.00177 0.00181 0.0249 0.0288
30 JADE256 12.1 6.44e-34 0.00167 0.00171 0.00175 0.024 0.0288
31 SaDE256 13.2 1.01e-39 0.00161 0.00165 0.0017 0.023 0.0288
32 rand/1/bin256−15−40 13.6 5.62e-42 0.00156 0.0016 0.00164 0.0221 0.0288
33 CoDE64 13.6 2.63e-42 0.00152 0.00155 0.00159 0.0212 0.0288
34 EPSDE32 14.1 7.68e-45 0.00147 0.00151 0.00155 0.0203 0.0288
35 SaDE512 14.1 3.92e-45 0.00143 0.00146 0.0015 0.0194 0.0288
36 rand/1/bin64 14.1 2.8e-45 0.00139 0.00142 0.00146 0.0185 0.0288
37 JADE512 14.1 2.06e-45 0.00135 0.00139 0.00142 0.0176 0.0288
38 CoDE 16 5.82e-58 0.00132 0.00135 0.00138 0.0166 0.0288
39 CLPSO 16.5 3.67e-61 0.00128 0.00131 0.00135 0.0157 0.0288
40 CLPSO32 16.5 3.67e-61 0.00125 0.00128 0.00132 0.0148 0.0288
41 CLPSO64 16.5 3.67e-61 0.00122 0.00125 0.00128 0.0139 0.0288
42 CLPSO128 16.5 3.67e-61 0.00119 0.00122 0.00125 0.013 0.0288
43 CLPSO512 16.5 3.67e-61 0.00116 0.00119 0.00122 0.0121 0.0288
44 rand/1/bin 17.2 2.91e-66 0.00114 0.00117 0.0012 0.0111 0.0288
45 CoDE128 17.3 7.41e-67 0.00111 0.00114 0.00117 0.0102 0.0288
46 CoDE256 17.7 2.6e-70 0.00109 0.00111 0.00114 0.00928 0.0288
47 rand/1/bin128 17.7 2.03e-70 0.00106 0.00109 0.00112 0.00836 0.0288
48 EPSDE64 18.6 8.13e-77 0.00104 0.00107 0.0011 0.00743 0.0288
49 CoDE512 19.1 3.81e-81 0.00102 0.00105 0.00107 0.00651 0.0288
50 rand/1/bin512 19.1 2.33e-81 0.001 0.00103 0.00105 0.00558 0.0288
51 EPSDE512 19.1 1.37e-81 0.00098 0.00101 0.00103 0.00465 0.0288
52 rand/1/bin256 19.3 2.22e-83 0.000962 0.000986 0.00101 0.00372 0.0288
53 EPSDE 19.6 2.24e-85 0.000943 0.000967 0.000993 0.00279 0.0288
54 EPSDE128 20.2 1.23e-90 0.000926 0.000949 0.000974 0.00186 0.0288
55 EPSDE256 20.3 1.02e-91 0.000909 0.000932 0.000956 0.000932 0.0288
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For the SaDE with NP = 32 in Table 5, the post-hoc procedures are not significant, but
on the ranking it is still worse than L-SHADE5. This shows that we have also attained a
well performing SaDE version that is competitive with our proposed algorithm L-SHADE5,
while the original version with NP = 100 (Zamuda & Hernández Sosa, 2014) was seen to be
outperformed by L-SHADE5 on all scenarios in Table 3. Specifically, when comparing pairs of
new instances of configured algorithms and results reported in literature before, these are also
the new improvements that are seen from Table 5: L-SHADE5 improves with ranking over the
previously best algorithms best/1/bin (without population resizing) and best/1/bin64−5−20
(with population size reduction), SaDE32 over SaDE, JADE32 over JADE, CoDE32 over
CoDe, EPSDE32 over EPSDE, best/1/bin64-5-20 over best/1/bin and, rand/1/bin32-20-10 over
rand/1/bin (as population size reduction versus fixed sizing jDE-based approaches).

As is evident from the findings listed in this section, we have shown that our proposed
method (L-SHADE5 for UGPP, outlined in Figure 2), clearly yields benefit to the identified
future prospects in UGPP (Lermusiaux et al., 2017) as explained in the Introduction, by new
empirical assessment, and even much more, by improving on the recognitions of applying
evolutionary algorithms which now further overcome the computational cost (not only of
classic deterministic methods as argued in (Zamuda & Hernández Sosa, 2014), and, once
more, the best state-of-the-art existing evolutionary UGPP algorithms, as demonstrated in
Table 5). By improving the computational cost due to new faster convergences (as demon-
strated in Figures 3–4) and the improving trajectories qualities for missions, this yields new
capabilites which mission planners will utilize.

Specifically explaining the contributions overall, it is that the selection of the right path
planning algorithm version for the expert system is of high importance when dealing with
complex and potentially risky situations as during recently developed real-missions – e.g.,
strong currents were present in the vehicle recovery area near the shoreline. Intensive simu-
lation and optimization procedures are required to provide as much evidence as possible for
the decision-making, and slight differences in the proposed path could, therefore, result in
significant trajectory alterations.

5. Conclusions

This paper proposed underwater glider path planning mission scenarios optimization
with a recently well performing evolutionary algorithm for continuous numerical optimiza-
tion, Success-History Based Adaptive Differential Evolution Algorithm (SHADE) including
Linear population size reduction (L-SHADE). An algorithm for path optimization consid-
ering the ocean currents model predictions, vessel dynamics, and limited communication,
yielded potential way-points for the vessel based on the most probable scenario; this is spe-
cially useful in oceanic engineering for short term opportunistic missions where no reactive
control is possible.

Also, the applicability of several configured algorithms has been compared to, analysed,
and further improved by configuration. Through the depicted fitness convergence graphs,
final obtained fitness plots, trajectories drawn, and per-scenario analysis, it was shown that
the new proposed algorithm yielded stable and competitive output trajectories. As was
further seen from statistical analysis, the proposed algorithm has outperformed all other
previous results from literature, and ranked first among the existing and newly configured
algorithms for UGPP. Moreover, some configured algorithms were shown to outperform
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their previous corresponding versions, improved by changing the population size for UGPP
evolution.

As the real-world implementation of underwater glider path planning over dynamic and
changing environment in deep ocean waters requires complex mission planning under very
high uncertainties, this paper contributes to improvements in the scheduling and planning
of real UGPP missions undertaken using such methods. UGGP missions are also influenced
to a large extent by the remote sensing for forecasting weather models’ outcomes used to
predict spatial currents in deep sea, further limiting the available time for accurate run-
time decisions by the pilot, who need to re-test several possible mission scenarios in a short
time, usually a few minutes. In this respect, performance improvements with L-SHADE over
previous UGPP applications would contribute to increased opportunity for mission scenario
re-tests or in very hard scenarios, to improve with practical significance upon suggested
trajectories during the decision-making process.

We have had the opportunity of testing our system during real ocean missions. Currently,
only pilot recommendation mode is allowed, so glider commands need to be validated before
sending them to the vehicle. The benefits of the proposal are more evident in highly variable
short-term scenarios, were dynamic ocean states need to be evaluated in a few minutes. The
quality of the actual final result is obviously conditioned by the forecast accuracy, but this
is also a limitation for a human expert based operation.

Future work includes further applications of L-SHADE and combinations of mechanisms
for UGPP, as well as adding newly appearing optimization algorithms for UGPP to increase
the advisory intelligence of the UGPP expert system and training more user pilots. As
already pointed out in our previous reserach, there are many research lines still explored,
and to list just a few, these autonomous piloting of glider swarms, varying of bearings
definition, multi-objective optimization of glider scenarios, and additional applications for
interactive glider mission decision maker expert support, like changing of mission priorities
during mission planning.
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Brest, J., & Maučec, M. S. (2008). Population Size Reduction for the Differential Evolution
Algorithm. Applied Intelligence, 29 , 228–247.
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Glotić, A., & Zamuda, A. (1 March 2015). Short-term combined economic and emission
hydrothermal optimization by surrogate differential evolution. Applied Energy , 141 ,
42–56.

Hamann, H., Khaluf, Y., Botev, J., Soorati, M. D., Ferrante, E., Kosak, O., Montanier,
J.-M., Mostaghim, S., Redpath, R., Timmis, J., Veenstra, F., Wahby, M., & Zamuda,
A. (2016). Hybrid Societies: Challenges and Perspectives in the Design of Collective
Behavior in Self-organizing Systems. Frontiers in Robotics and AI , 3 , 1–8.

Hansen, N., & Ostermeier, A. (2001). Completely Derandomized Self-Adaptation in Evolu-
tion Strategies. Evolutionary Computation, 9 , 159–195.

Hátún, H., Eriksen, C. C., & Rhines, P. B. (2007). Buoyant eddies entering the Labrador Sea
observed with gliders and altimetry. Journal of Physical Oceanography , 37 , 2838–2854.

Hernández Sosa, J. D., Smith, R. N., Fernández Perdomo, E., Isern González, J., Cabr-
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